This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/doc/build_wamr.md

11 KiB
Raw Blame History

Build WAMR core (iwasm)

It is recommended to use the WAMR SDK tools to build a project that integrates the WAMR. This document introduces how to build the WAMR minimal product which is vmcore only (no app-framework and app-mgr) for multiple platforms.

iwasm VM core CMake building configurations

By including the script runtime_lib.cmake under folder build-scripts in CMakeList.txt, it is easy to build minimal product with CMake.

# add this in your CMakeList.text
include (${WAMR_ROOT_DIR}/build-scripts/runtime_lib.cmake)
add_library(vmlib ${WAMR_RUNTIME_LIB_SOURCE})

The script runtime_lib.cmake defined a number of variables for configuring the WAMR runtime features. You can set these variables in your CMakeList.txt or pass the configurations from cmake command line.

Configure platform and architecture

  • WAMR_BUILD_PLATFORM: set the target platform. It can be set to any platform name (folder name) under folder core/shared/platform.

  • WAMR_BUILD_TARGET: set the target CPU architecture. Current supported targets: X86_64, X86_32, AArch64, ARM, THUMB, XTENSA and MIPS. For AArch64, ARM and THUMB, the format is [][_VFP] where is the ARM sub-architecture and the "_VFP" suffix means VFP coprocessor registers s0-s15 (d0-d7) are used for passing arguments or returning results in standard procedure-call. Both and "_VFP" are optional. e.g. AARCH64, AARCH64V8, AARCHV8.1, ARMV7, ARMV7_VFP, THUMBV7, THUMBV7_VFP and so on.

    cmake -DWAMR_BUILD_PLATFORM=linux -DWAMR_BUILD_TARGET=ARM
    

Configure interpreter

  • WAMR_BUILD_INTERP=1/0: enable or disable WASM interpreter

  • WAMR_BUILD_FAST_INTERP=1/0build fast (default) or classic WASM interpreter.

    NOTE: the fast interpreter will run ~2X faster than classic interpreter, but it consumes about 2X memory to hold the WASM bytecode code.

Configure AoT and JIT

  • WAMR_BUILD_AOT=1/0
  • WAMR_BUILD_JIT=1/0 , (Disabled if no set)

Configure LIBC

  • WAMR_BUILD_LIBC_BUILTIN=1/0, default to enable if no set

  • WAMR_BUILD_LIBC_WASI=1/0, default to disable if no set

Enable Multi-Module feature

  • WAMR_BUILD_MULTI_MODULE=1/0, default to disable if not set

Enable WASM mini loader

  • WAMR_BUILD_MINI_LOADER=1/0, default to disable if not set Note: the mini loader doesn't check the integrity of the WASM binary file, user must ensure that the WASM file is not mal-formed.

Enable shared memory feature

  • WAMR_BUILD_SHARED_MEMORY=1/0, default to disable if not set

Enable thread manager

  • WAMR_BUILD_THREAD_MGR=1/0, default to disable if not set

Enable Lib-pthread

  • WAMR_BUILD_LIB_PTHREAD=1/0, default to disable if not set

Note: The dependent feature of lib pthread such as the shared memory and thread manager will be enabled automatically.

Combination of configurations:

We can combine the configurations. For example, if we want to disable interpreter, enable AOT and WASI, we can run command:

cmake .. -DWAMR_BUILD_INTERP=0 -DWAMR_BUILD_AOT=1 -DWAMR_BUILD_LIBC_WASI=0 -DWAMR_BUILD_PLATFORM=linux

Or if we want to enable interpreter, disable AOT and WASI, and build as X86_32, we can run command:

cmake .. -DWAMR_BUILD_INTERP=1 -DWAMR_BUILD_AOT=0 -DWAMR_BUILD_LIBC_WASI=0 -DWAMR_BUILD_TARGET=X86_32

Cross compilation

If you are building for ARM architecture on a X86 development machine, you can use the CMAKE_TOOLCHAIN_FILE to set the toolchain file for cross compling.

cmake .. -DCMAKE_TOOLCHAIN_FILE=$TOOL_CHAIN_FILE  \
         -DWAMR_BUILD_PLATFORM=linux    \
         -DWAMR_BUILD_TARGET=ARM

Refer to toochain sample file samples/simple/profiles/arm-interp/toolchain.cmake for how to build mini product for ARM target architecture.

Linux

First of all please install the dependent packages. Run command below in Ubuntu-18.04:

sudo apt install build-essential cmake g++-multilib libgcc-8-dev lib32gcc-8-dev

Or in Ubuntu-16.04:

sudo apt install build-essential cmake g++-multilib libgcc-5-dev lib32gcc-5-dev

Or in Fedora:

sudo dnf install glibc-devel.i686

After installing dependencies, build the source code:

cd product-mini/platforms/linux/
mkdir build
cd build
cmake ..
make

By default in Linux, the interpreter, AOT and WASI are enabled, and JIT is disabled. And the build target is set to X86_64 or X86_32 depending on the platform's bitwidth.

To enable WASM JIT, firstly we should build LLVM:

cd product-mini/platforms/linux/
./build_llvm.sh     (The llvm source code is cloned under <wamr_root_dir>/core/deps/llvm and auto built)

Then pass argument -DWAMR_BUILD_JIT=1 to cmake to enable WASM JIT:

mkdir build
cd build
cmake .. -DWAMR_BUILD_JIT=1
make

Linux SGX (Intel Software Guard Extention)

First of all please install the Intel SGX SDK.

After installing dependencies, build the source code:

source <SGX_SDK dir>/environment
cd product-mini/platforms/linux-sgx/
mkdir build
cd build
cmake ..
make

This builds the libraries used by SGX enclave sample, the generated file libvmlib.a and libextlib.a will be copied to enclave-sample folder.

Then build the enclave sample:

source <SGX_SDK dir>/environment
cd enclave-sample
make

The binary file app will be generated.

To run the sample:

source <SGX_SDK dir>/environment
./app

MacOS

Make sure to install Xcode from App Store firstly, and install cmake.

If you use Homebrew, install cmake from the command line:

brew install cmake

Then build the source codes:

cd product-mini/platforms/darwin/
mkdir build
cd build
cmake ..
make

Note: WAMR provides some features which can be easily configured by passing options to cmake, please see Linux platform for details. Currently in MacOS, interpreter, AoT, and builtin libc are enabled by default.

VxWorks

VxWorks 7 SR0620 release is validated.

First you need to build a VSB. Make sure UTILS_UNIX layer is added in the VSB. After the VSB is built, export the VxWorks toolchain path by:

export <vsb_dir_path>/host/vx-compiler/bin:$PATH

Now switch to iwasm source tree to build the source code:

cd product-mini/platforms/vxworks/
mkdir build
cd build
cmake ..
make

Create a VIP based on the VSB. Make sure the following components are added:

  • INCLUDE_POSIX_PTHREADS
  • INCLUDE_POSIX_PTHREAD_SCHEDULER
  • INCLUDE_SHARED_DATA
  • INCLUDE_SHL

Copy the generated iwasm executable, the test WASM binary as well as the needed shared libraries (libc.so.1, libllvm.so.1 or libgnu.so.1 depending on the VSB, libunix.so.1) to a supported file system (eg: romfs).

Note: WAMR provides some features which can be easily configured by passing options to cmake, please see Linux platform for details. Currently in VxWorks, interpreter and builtin libc are enabled by default.

Zephyr

You need to download the Zephyr source code first and embed WAMR into it.

git clone https://github.com/zephyrproject-rtos/zephyr.git
cd zephyr/samples/
cp -a <wamr_root_dir>/product-mini/platforms/zephyr/simple .
cd simple
ln -s <wamr_root_dir> wamr
source ../../zephyr-env.sh
# Execute the ./build_and_run.sh script with board name as parameter. Here take x86 as example:
./build_and_run.sh x86

Note: WAMR provides some features which can be easily configured by passing options to cmake, please see Linux platform for details. Currently in Zephyr, interpreter, AoT and builtin libc are enabled by default.

AliOS-Things

  1. a developerkit board id needed for testing

  2. download the AliOS-Things code

    git clone https://github.com/alibaba/AliOS-Things.git
    
  3. copy <wamr_root_dir>/product-mini/platforms/alios-things directory to AliOS-Things/middleware, and rename it as iwasm

    cp -a <wamr_root_dir>/product-mini/platforms/alios-things middleware/iwasm
    
  4. create a link to <wamr_root_dir> in middleware/iwasm/ and rename it to wamr

    ln -s <wamr_root_dir> middleware/iwasm/wamr
    
  5. modify file app/example/helloworld/helloworld.c, patch as:

    #include <stdbool.h>
    #include <aos/kernel.h>
    extern bool iwasm_init();
    int application_start(int argc, char *argv[])
    {
         int count = 0;
         iwasm_init();
        ...
    }
    
  6. modify file app/example/helloworld/aos.mk

       $(NAME)_COMPONENTS := osal_aos iwasm
    
  7. build source code and run For linux host:

    aos make helloworld@linuxhost -c config
    aos make
    ./out/helloworld@linuxhost/binary/helloworld@linuxhost.elf
    

    For developerkit: Modify file middleware/iwasm/aos.mk, patch as:

    WAMR_BUILD_TARGET := THUMBV7M
    
    aos make helloworld@developerkit -c config
    aos make
    

    download the binary to developerkit board, check the output from serial port

Android

able to generate a shared library support Android platform.

  • need an android SDK. Go and get the "Command line tools only"
  • look for a command named sdkmanager and download below components. version numbers might need to check and pick others
    • "build-tools;29.0.3"
    • "cmake;3.10.2.4988404"
    • "ndk;21.0.6113669"
    • "patcher;v4"
    • "platform-tools"
    • "platforms;android-29"
  • add bin/ of the downloaded cmake to $PATH
  • export ANDROID_SDK_HOME=/the/path/of/downloaded/sdk/
  • export ANDROID_NDK_HOME=/the/path/of/downloaded/sdk/ndk/
  • ready to go

Use such commands, you are able to compile with default configurations. Any compiling requirement should be satisfied by modifying product-mini/platforms/android/CMakeList.txt. For example, chaning ${WAMR_BUILD_TARGET} in CMakeList could get different libraries support different ABIs.

$ cd product-mini/platforms/android/
$ mkdir build
$ cd build
$ cmake ..
$ make
$ # check output in distribution/wasm
$ # include/ includes all necesary head files
$ # lib includes libiwasm.so

Docker

Docker will download all the dependencies and build WAMR Core on your behalf.

Make sure you have Docker installed on your machine: macOS, Windows or Linux.

Build the Docker image:

docker build --rm -f "Dockerfile" -t wamr:latest .

Run the image in interactive mode:

docker run --rm -it wamr:latest

You'll now enter the container at /root.