This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/doc/multi_module.md
wenyongh 752826a667
Implement multi-module feature and bulk-memory feature (#271)
Refine wasm loader and aot loader
Fix potential issue of os_mmap/os_munmap
Update document
2020-06-02 14:53:06 +08:00

229 lines
7.9 KiB
Markdown

Multiple Modules as Dependencies
=========================
It is allowed that one WASM module can *import* *functions*, *globals*, *memories* and *tables* from other modules as its dependencies, and also one module can *export* those entities for other modules to *access* and may *write*.
WAMR loads all dependencies recursively according to the *import section* of a module.
> Currently WAMR only implements the load-time dynamic linking. Please refer to [dynamic linking](https://webassembly.org/docs/dynamic-linking/) for more details.
## Multi-Module Related APIs
### Register a module
``` c
bool
wasm_runtime_register_module(const char *module_name,
wasm_module_t module,
char *error_buf,
uint32_t error_buf_size);
```
It is used to register a *module* with a *module_name* to WASM runtime, especially for the root module, which is loaded by `wasm_runtime_load()` and doesn't have a chance to tell runtime its *module name*.
Fot all the sub modules, WAMR will get their names and load the .wasm files from the filesystem or stream, so no need to register the sub modules again.
### Find a registered module
``` c
wasm_module_t
wasm_runtime_find_module_registered(
const char *module_name);
```
It is used to check if a module with a given *module_name* has been registered, if yes return the module.
### Module reader and destroyer
``` c
typedef bool (*module_reader)(const char *module_name,
uint8_t **p_buffer,
uint32_t *p_size);
typedef void (*module_destroyer)(uint8_t *buffer,
uint32_t size);
void
wasm_runtime_set_module_reader(const module_reader reader,
const module_destroyer destroyer);
```
WAMR hopes that the native host or embedding environment loads/unloads the module WASM files by themselves and only passes runtime the binary content without worrying filesystem or storage issues. `module_reader` and `module_destroyer` are two callbacks called when dynamic-loading/unloading the sub modules. Developers must implement the two callbacks by themselves.
### Call function of sub module
```c
wasm_function_inst_t
wasm_runtime_lookup_function(wasm_module_inst_t const module_inst,
const char *name,
const char *signature);
```
Multi-module allows to lookup the function of sub module and call it. There are two ways to indicate the function *name*:
- parent function name only by default, used to lookup the function of parent module
- sub module name, function name of sub module and two $ symbols, e.g. `$sub_module_name$function_name`, used to lookup function of sub module
## Example
### WASM modules
Suppose we have three C files, *mA.c*, *mB.c* and *mC.c*. Each of them has some exported functions and import some from others except mA.
Undefined symbols can be marked in the source code with the *import_name* clang attribute which means that they are expected to be undefined at static link time. Without the *import_module* clang attribute, undefined symbols will be marked from the *env* module.
``` C
// mA.c
int A() { return 10; }
```
``` C
// mB.c
__attribute__((import_module("mA"))) __attribute__((import_name("A"))) extern int A();
int B() { return 11; }
int call_A() { return A(); }
```
``` C
// mC.c
__attribute__((import_module("mA"))) __attribute__((import_name("A"))) extern int A();
__attribute__((import_module("mB"))) __attribute__((import_name("B"))) extern int B();
int C() { return 12; }
int call_A() { return A(); }
int call_B() { return B(); }
```
By default no undefined symbols are allowed in the final binary. The flag *--allow-undefined* results in a WebAssembly import being defined for each undefined symbol. It is then up to the runtime to provide such symbols.
When building an executable, only the entry point (_start) and symbols with the *export_name* attribute exported by default. in addition, symbols can be exported via the linker command line using *--export*.
In the example, another linked command option *--export-all* is used.
> with more detail, please refer to [WebAssembly lld port][https://lld.llvm.org/WebAssembly.html]
Here is an example how to compile a *.c* to a *.wasm* with clang. Since there is no *start* function, we use *--no-entry* option.
``` shell
$ clang --target=wasm32 -nostdlib \
-Wl,--no-entry,--allow-undefined,--export-all \
-o mA.wasm mA.c
$ clang --target=wasm32 -nostdlib \
-Wl,--no-entry,--allow-undefined,--export-all \
-o mB.wasm mB.c
$ clang --target=wasm32 -nostdlib \
-Wl,--no-entry,--allow-undefined,--export-all \
-o mC.wasm mC.c
```
put *mA.wasm*, *mB.wasm* and *mC.wasm* in the directory *wasm-apps*
``` shell
$ # copy mA.wasm, mB.wasm and mC.wasm into wasm-apps
$ tree wasm-apps/
wasm-apps/
├── mA.wasm
├── mB.wasm
└── mC.wasm
```
eventually, their *import relationships* will be like:
![import relationships](./pics/multi_module_pic1.png)
### libvmlib
We need to enable *WAMR_BUILD_MULTI_MODULE* option when building WAMR vmlib. Please ref to [Build WAMR core](./build_wamr.md) for a thoughtful guide.
### code
After all above preparation, we can call some functions from native code with APIs
first, create two callbacks to load WASM module files into memory and unload them later
``` c
static bool
module_reader_cb(const char *module_name, uint8 **p_buffer, uint32 *p_size)
{
// ...
*p_buffer = (uint8_t *)bh_read_file_to_buffer(wasm_file_path, p_size);
// ...
}
static void
module_destroyer_cb(uint8 *buffer, uint32 size)
{
BH_FREE(buffer);
}
```
second, create a large buffer and tell WAMR malloc any resource only from this buffer later
``` c
static char sandbox_memory_space[10 * 1024 * 1024] = { 0 };
```
third, put all together
``` c
int main()
{
/* all malloc() only from the given buffer */
init_args.mem_alloc_type = Alloc_With_Pool;
init_args.mem_alloc_option.pool.heap_buf = sandbox_memory_space;
init_args.mem_alloc_option.pool.heap_size = sizeof(sandbox_memory_space);
/* initialize runtime environment */
wasm_runtime_full_init(&init_args);
/* set module reader and destroyer */
wasm_runtime_set_module_reader(module_reader_cb, module_destroyer_cb);
/* load WASM byte buffer from WASM bin file */
module_reader_cb("mC", &file_buf, &file_buf_size));
/* load mC and let WAMR load mA and mB */
module = wasm_runtime_load(file_buf, file_buf_size,
error_buf, sizeof(error_buf));
/* instantiate the module */
module_inst =
wasm_runtime_instantiate(module, stack_size,
heap_size, error_buf, sizeof(error_buf)));
printf("call \"C\", it will return 0xc:i32, ===> ");
wasm_application_execute_func(module_inst, "C", 0, &args[0]);
printf("call \"call_B\", it will return 0xb:i32, ===> ");
wasm_application_execute_func(module_inst, "call_B", 0, &args[0]);
printf("call \"call_A\", it will return 0xa:i32, ===>");
wasm_application_execute_func(module_inst, "call_A", 0, &args[0]);
/* call some functions of mB */
printf("call \"mB.B\", it will return 0xb:i32, ===>");
wasm_application_execute_func(module_inst, "$mB$B", 0, &args[0]);
printf("call \"mB.call_A\", it will return 0xa:i32, ===>");
wasm_application_execute_func(module_inst, "$mB$call_A", 0, &args[0]);
/* call some functions of mA */
printf("call \"mA.A\", it will return 0xa:i32, ===>");
wasm_application_execute_func(module_inst, "$mA$A", 0, &args[0]);
// ...
}
```
> please refer to [main.c](../samples/multi_modules/src/main.c)
The output of the main.c will like:
``` shell
$ ./a.out
call "C", it will return 0xc:i32, ===> 0xc:i32
call "call_B", it will return 0xb:i32, ===> 0xb:i32
call "call_A", it will return 0xa:i32, ===>0xa:i32
call "mB.B", it will return 0xb:i32, ===>0xb:i32
call "mB.call_A", it will return 0xa:i32, ===>0xa:i32
call "mA.A", it will return 0xa:i32, ===>0xa:i32
```