This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/iwasm/compilation/aot_emit_numberic.c
Wenyong Huang d4758d7380
Refine codes and fix several issues (#1094)
Add aot relocation for ".rodata.str" symbol to support more cases
Fix some coding style issues
Fix aot block/value stack destroy issue
Refine classic/fast interpreter codes
Clear compile warning of libc_builtin_wrapper.c in 32-bit platform
2022-04-18 17:33:30 +08:00

1152 lines
40 KiB
C

/*
* Copyright (C) 2020 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "aot_emit_numberic.h"
#include "aot_emit_exception.h"
#include "aot_emit_control.h"
#include "../aot/aot_runtime.h"
#include "../aot/aot_intrinsic.h"
#include <stdarg.h>
#define LLVM_BUILD_ICMP(op, left, right, res, name) \
do { \
if (!(res = \
LLVMBuildICmp(comp_ctx->builder, op, left, right, name))) { \
aot_set_last_error("llvm build " name " fail."); \
return false; \
} \
} while (0)
#define LLVM_BUILD_OP(Op, left, right, res, name, err_ret) \
do { \
if (!(res = LLVMBuild##Op(comp_ctx->builder, left, right, name))) { \
aot_set_last_error("llvm build " #name " fail."); \
return err_ret; \
} \
} while (0)
#define ADD_BASIC_BLOCK(block, name) \
do { \
if (!(block = LLVMAppendBasicBlockInContext(comp_ctx->context, \
func_ctx->func, name))) { \
aot_set_last_error("llvm add basic block failed."); \
goto fail; \
} \
\
LLVMMoveBasicBlockAfter(block, LLVMGetInsertBlock(comp_ctx->builder)); \
} while (0)
#if LLVM_VERSION_NUMBER >= 12
#define IS_CONST_ZERO(val) \
(!LLVMIsUndef(val) && !LLVMIsPoison(val) && LLVMIsConstant(val) \
&& ((is_i32 && (int32)LLVMConstIntGetZExtValue(val) == 0) \
|| (!is_i32 && (int64)LLVMConstIntGetSExtValue(val) == 0)))
#else
#define IS_CONST_ZERO(val) \
(!LLVMIsUndef(val) && LLVMIsConstant(val) \
&& ((is_i32 && (int32)LLVMConstIntGetZExtValue(val) == 0) \
|| (!is_i32 && (int64)LLVMConstIntGetSExtValue(val) == 0)))
#endif
#define CHECK_INT_OVERFLOW(type) \
do { \
LLVMValueRef cmp_min_int, cmp_neg_one; \
LLVM_BUILD_ICMP(LLVMIntEQ, left, type##_MIN, cmp_min_int, \
"cmp_min_int"); \
LLVM_BUILD_ICMP(LLVMIntEQ, right, type##_NEG_ONE, cmp_neg_one, \
"cmp_neg_one"); \
LLVM_BUILD_OP(And, cmp_min_int, cmp_neg_one, overflow, "overflow", \
false); \
} while (0)
#define PUSH_INT(v) \
do { \
if (is_i32) \
PUSH_I32(v); \
else \
PUSH_I64(v); \
} while (0)
#define POP_INT(v) \
do { \
if (is_i32) \
POP_I32(v); \
else \
POP_I64(v); \
} while (0)
#define PUSH_FLOAT(v) \
do { \
if (is_f32) \
PUSH_F32(v); \
else \
PUSH_F64(v); \
} while (0)
#define POP_FLOAT(v) \
do { \
if (is_f32) \
POP_F32(v); \
else \
POP_F64(v); \
} while (0)
#define DEF_INT_UNARY_OP(op, err) \
do { \
LLVMValueRef res, operand; \
POP_INT(operand); \
if (!(res = op)) { \
if (err) \
aot_set_last_error(err); \
return false; \
} \
PUSH_INT(res); \
} while (0)
#define DEF_INT_BINARY_OP(op, err) \
do { \
LLVMValueRef res, left, right; \
POP_INT(right); \
POP_INT(left); \
if (!(res = op)) { \
if (err) \
aot_set_last_error(err); \
return false; \
} \
PUSH_INT(res); \
} while (0)
#define DEF_FP_UNARY_OP(op, err) \
do { \
LLVMValueRef res, operand; \
POP_FLOAT(operand); \
if (!(res = op)) { \
if (err) \
aot_set_last_error(err); \
return false; \
} \
PUSH_FLOAT(res); \
} while (0)
#define DEF_FP_BINARY_OP(op, err) \
do { \
LLVMValueRef res, left, right; \
POP_FLOAT(right); \
POP_FLOAT(left); \
if (!(res = op)) { \
if (err) \
aot_set_last_error(err); \
return false; \
} \
PUSH_FLOAT(res); \
} while (0)
#define SHIFT_COUNT_MASK \
do { \
/* LLVM has undefined behavior if shift count is greater than \
* bits count while Webassembly spec requires the shift count \
* be wrapped. \
*/ \
LLVMValueRef shift_count_mask, bits_minus_one; \
bits_minus_one = is_i32 ? I32_31 : I64_63; \
LLVM_BUILD_OP(And, right, bits_minus_one, shift_count_mask, \
"shift_count_mask", NULL); \
right = shift_count_mask; \
} while (0)
/* Call llvm constrained floating-point intrinsic */
static LLVMValueRef
call_llvm_float_experimental_constrained_intrinsic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx,
bool is_f32,
const char *intrinsic, ...)
{
va_list param_value_list;
LLVMValueRef ret;
LLVMTypeRef param_types[4], ret_type = is_f32 ? F32_TYPE : F64_TYPE;
int param_count = (comp_ctx->disable_llvm_intrinsics
&& aot_intrinsic_check_capability(comp_ctx, intrinsic))
? 2
: 4;
param_types[0] = param_types[1] = ret_type;
param_types[2] = param_types[3] = MD_TYPE;
va_start(param_value_list, intrinsic);
ret = aot_call_llvm_intrinsic_v(comp_ctx, func_ctx, intrinsic, ret_type,
param_types, param_count, param_value_list);
va_end(param_value_list);
return ret;
}
/* Call llvm constrained libm-equivalent intrinsic */
static LLVMValueRef
call_llvm_libm_experimental_constrained_intrinsic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx,
bool is_f32,
const char *intrinsic, ...)
{
va_list param_value_list;
LLVMValueRef ret;
LLVMTypeRef param_types[3], ret_type = is_f32 ? F32_TYPE : F64_TYPE;
param_types[0] = ret_type;
param_types[1] = param_types[2] = MD_TYPE;
va_start(param_value_list, intrinsic);
ret = aot_call_llvm_intrinsic_v(comp_ctx, func_ctx, intrinsic, ret_type,
param_types, 3, param_value_list);
va_end(param_value_list);
return ret;
}
static LLVMValueRef
compile_op_float_min_max(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
bool is_f32, LLVMValueRef left, LLVMValueRef right,
bool is_min)
{
LLVMTypeRef param_types[2], ret_type = is_f32 ? F32_TYPE : F64_TYPE,
int_type = is_f32 ? I32_TYPE : I64_TYPE;
LLVMValueRef cmp, is_eq, is_nan, ret, left_int, right_int, tmp,
nan = LLVMConstRealOfString(ret_type, "NaN");
char *intrinsic = is_min ? (is_f32 ? "llvm.minnum.f32" : "llvm.minnum.f64")
: (is_f32 ? "llvm.maxnum.f32" : "llvm.maxnum.f64");
CHECK_LLVM_CONST(nan);
param_types[0] = param_types[1] = ret_type;
if (!(is_nan = LLVMBuildFCmp(comp_ctx->builder, LLVMRealUNO, left, right,
"is_nan"))
|| !(is_eq = LLVMBuildFCmp(comp_ctx->builder, LLVMRealOEQ, left, right,
"is_eq"))) {
aot_set_last_error("llvm build fcmp fail.");
return NULL;
}
/* If left and right are equal, they may be zero with different sign.
Webassembly spec assert -0 < +0. So do a bitwise here. */
if (!(left_int =
LLVMBuildBitCast(comp_ctx->builder, left, int_type, "left_int"))
|| !(right_int = LLVMBuildBitCast(comp_ctx->builder, right, int_type,
"right_int"))) {
aot_set_last_error("llvm build bitcast fail.");
return NULL;
}
if (is_min)
LLVM_BUILD_OP(Or, left_int, right_int, tmp, "tmp_int", NULL);
else
LLVM_BUILD_OP(And, left_int, right_int, tmp, "tmp_int", NULL);
if (!(tmp = LLVMBuildBitCast(comp_ctx->builder, tmp, ret_type, "tmp"))) {
aot_set_last_error("llvm build bitcast fail.");
return NULL;
}
if (!(cmp = aot_call_llvm_intrinsic(comp_ctx, func_ctx, intrinsic, ret_type,
param_types, 2, left, right)))
return NULL;
if (!(cmp = LLVMBuildSelect(comp_ctx->builder, is_eq, tmp, cmp, "cmp"))) {
aot_set_last_error("llvm build select fail.");
return NULL;
}
if (!(ret = LLVMBuildSelect(comp_ctx->builder, is_nan, nan, cmp,
is_min ? "min" : "max"))) {
aot_set_last_error("llvm build select fail.");
return NULL;
}
return ret;
fail:
return NULL;
}
typedef enum BitCountType {
CLZ32 = 0,
CLZ64,
CTZ32,
CTZ64,
POP_CNT32,
POP_CNT64
} BitCountType;
/* clang-format off */
static char *bit_cnt_llvm_intrinsic[] = {
"llvm.ctlz.i32",
"llvm.ctlz.i64",
"llvm.cttz.i32",
"llvm.cttz.i64",
"llvm.ctpop.i32",
"llvm.ctpop.i64",
};
/* clang-format on */
static bool
aot_compile_int_bit_count(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
BitCountType type, bool is_i32)
{
LLVMValueRef zero_undef;
LLVMTypeRef ret_type, param_types[2];
param_types[0] = ret_type = is_i32 ? I32_TYPE : I64_TYPE;
param_types[1] = LLVMInt1TypeInContext(comp_ctx->context);
zero_undef = LLVMConstInt(param_types[1], false, true);
CHECK_LLVM_CONST(zero_undef);
/* Call the LLVM intrinsic function */
if (type < POP_CNT32)
DEF_INT_UNARY_OP(aot_call_llvm_intrinsic(
comp_ctx, func_ctx, bit_cnt_llvm_intrinsic[type],
ret_type, param_types, 2, operand, zero_undef),
NULL);
else
DEF_INT_UNARY_OP(aot_call_llvm_intrinsic(
comp_ctx, func_ctx, bit_cnt_llvm_intrinsic[type],
ret_type, param_types, 1, operand),
NULL);
return true;
fail:
return false;
}
static bool
compile_rems(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
LLVMValueRef left, LLVMValueRef right, LLVMValueRef overflow_cond,
bool is_i32)
{
LLVMValueRef phi, no_overflow_value, zero = is_i32 ? I32_ZERO : I64_ZERO;
LLVMBasicBlockRef block_curr, no_overflow_block, rems_end_block;
block_curr = LLVMGetInsertBlock(comp_ctx->builder);
/* Add 2 blocks: no_overflow_block and rems_end block */
ADD_BASIC_BLOCK(rems_end_block, "rems_end");
ADD_BASIC_BLOCK(no_overflow_block, "rems_no_overflow");
/* Create condition br */
if (!LLVMBuildCondBr(comp_ctx->builder, overflow_cond, rems_end_block,
no_overflow_block)) {
aot_set_last_error("llvm build cond br failed.");
return false;
}
/* Translate no_overflow_block */
LLVMPositionBuilderAtEnd(comp_ctx->builder, no_overflow_block);
/* Calculate the rem value */
LLVM_BUILD_OP(SRem, left, right, no_overflow_value, "rem_s", false);
/* Jump to rems_end block */
if (!LLVMBuildBr(comp_ctx->builder, rems_end_block)) {
aot_set_last_error("llvm build br failed.");
return false;
}
/* Translate rems_end_block */
LLVMPositionBuilderAtEnd(comp_ctx->builder, rems_end_block);
/* Create result phi */
if (!(phi = LLVMBuildPhi(comp_ctx->builder, is_i32 ? I32_TYPE : I64_TYPE,
"rems_result_phi"))) {
aot_set_last_error("llvm build phi failed.");
return false;
}
/* Add phi incoming values */
LLVMAddIncoming(phi, &no_overflow_value, &no_overflow_block, 1);
LLVMAddIncoming(phi, &zero, &block_curr, 1);
if (is_i32)
PUSH_I32(phi);
else
PUSH_I64(phi);
return true;
fail:
return false;
}
static bool
compile_int_div(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntArithmetic arith_op, bool is_i32, uint8 **p_frame_ip)
{
LLVMValueRef left, right, cmp_div_zero, overflow, res;
LLVMBasicBlockRef check_div_zero_succ, check_overflow_succ;
bh_assert(arith_op == INT_DIV_S || arith_op == INT_DIV_U
|| arith_op == INT_REM_S || arith_op == INT_REM_U);
POP_INT(right);
POP_INT(left);
if (LLVMIsUndef(right) || LLVMIsUndef(left)
#if LLVM_VERSION_NUMBER >= 12
|| LLVMIsPoison(right) || LLVMIsPoison(left)
#endif
) {
if (!(aot_emit_exception(comp_ctx, func_ctx, EXCE_INTEGER_OVERFLOW,
false, NULL, NULL))) {
goto fail;
}
return aot_handle_next_reachable_block(comp_ctx, func_ctx, p_frame_ip);
}
if (LLVMIsConstant(right)) {
int64 right_val = (int64)LLVMConstIntGetSExtValue(right);
switch (right_val) {
case 0:
/* Directly throw exception if divided by zero */
if (!(aot_emit_exception(comp_ctx, func_ctx,
EXCE_INTEGER_DIVIDE_BY_ZERO, false,
NULL, NULL)))
goto fail;
return aot_handle_next_reachable_block(comp_ctx, func_ctx,
p_frame_ip);
case 1:
if (arith_op == INT_DIV_S || arith_op == INT_DIV_U)
PUSH_INT(left);
else
PUSH_INT(is_i32 ? I32_ZERO : I64_ZERO);
return true;
case -1:
if (arith_op == INT_DIV_S) {
LLVM_BUILD_ICMP(LLVMIntEQ, left, is_i32 ? I32_MIN : I64_MIN,
overflow, "overflow");
ADD_BASIC_BLOCK(check_overflow_succ,
"check_overflow_success");
/* Throw conditional exception if overflow */
if (!(aot_emit_exception(comp_ctx, func_ctx,
EXCE_INTEGER_OVERFLOW, true,
overflow, check_overflow_succ)))
goto fail;
/* Push -(left) to stack */
if (!(res = LLVMBuildNeg(comp_ctx->builder, left, "neg"))) {
aot_set_last_error("llvm build neg fail.");
return false;
}
PUSH_INT(res);
return true;
}
else if (arith_op == INT_REM_S) {
PUSH_INT(is_i32 ? I32_ZERO : I64_ZERO);
return true;
}
else {
/* fall to default */
goto handle_default;
}
handle_default:
default:
/* Build div */
switch (arith_op) {
case INT_DIV_S:
LLVM_BUILD_OP(SDiv, left, right, res, "div_s", false);
break;
case INT_DIV_U:
LLVM_BUILD_OP(UDiv, left, right, res, "div_u", false);
break;
case INT_REM_S:
LLVM_BUILD_OP(SRem, left, right, res, "rem_s", false);
break;
case INT_REM_U:
LLVM_BUILD_OP(URem, left, right, res, "rem_u", false);
break;
default:
bh_assert(0);
return false;
}
PUSH_INT(res);
return true;
}
}
else {
/* Check divied by zero */
LLVM_BUILD_ICMP(LLVMIntEQ, right, is_i32 ? I32_ZERO : I64_ZERO,
cmp_div_zero, "cmp_div_zero");
ADD_BASIC_BLOCK(check_div_zero_succ, "check_div_zero_success");
/* Throw conditional exception if divided by zero */
if (!(aot_emit_exception(comp_ctx, func_ctx,
EXCE_INTEGER_DIVIDE_BY_ZERO, true,
cmp_div_zero, check_div_zero_succ)))
goto fail;
switch (arith_op) {
case INT_DIV_S:
/* Check integer overflow */
if (is_i32)
CHECK_INT_OVERFLOW(I32);
else
CHECK_INT_OVERFLOW(I64);
ADD_BASIC_BLOCK(check_overflow_succ, "check_overflow_success");
/* Throw conditional exception if integer overflow */
if (!(aot_emit_exception(comp_ctx, func_ctx,
EXCE_INTEGER_OVERFLOW, true, overflow,
check_overflow_succ)))
goto fail;
LLVM_BUILD_OP(SDiv, left, right, res, "div_s", false);
PUSH_INT(res);
return true;
case INT_DIV_U:
LLVM_BUILD_OP(UDiv, left, right, res, "div_u", false);
PUSH_INT(res);
return true;
case INT_REM_S:
/* Webassembly spec requires it return 0 */
if (is_i32)
CHECK_INT_OVERFLOW(I32);
else
CHECK_INT_OVERFLOW(I64);
return compile_rems(comp_ctx, func_ctx, left, right, overflow,
is_i32);
case INT_REM_U:
LLVM_BUILD_OP(URem, left, right, res, "rem_u", false);
PUSH_INT(res);
return true;
default:
bh_assert(0);
return false;
}
}
fail:
return false;
}
static LLVMValueRef
compile_int_add(AOTCompContext *comp_ctx, LLVMValueRef left, LLVMValueRef right,
bool is_i32)
{
/* If one of the operands is 0, just return the other */
if (IS_CONST_ZERO(left))
return right;
if (IS_CONST_ZERO(right))
return left;
/* Build add */
return LLVMBuildAdd(comp_ctx->builder, left, right, "add");
}
static LLVMValueRef
compile_int_sub(AOTCompContext *comp_ctx, LLVMValueRef left, LLVMValueRef right,
bool is_i32)
{
/* If the right operand is 0, just return the left */
if (IS_CONST_ZERO(right))
return left;
/* Build sub */
return LLVMBuildSub(comp_ctx->builder, left, right, "sub");
}
static LLVMValueRef
compile_int_mul(AOTCompContext *comp_ctx, LLVMValueRef left, LLVMValueRef right,
bool is_i32)
{
/* If one of the operands is 0, just return constant 0 */
if (IS_CONST_ZERO(left) || IS_CONST_ZERO(right))
return is_i32 ? I32_ZERO : I64_ZERO;
/* Build mul */
return LLVMBuildMul(comp_ctx->builder, left, right, "mul");
}
static bool
compile_op_int_arithmetic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntArithmetic arith_op, bool is_i32,
uint8 **p_frame_ip)
{
switch (arith_op) {
case INT_ADD:
DEF_INT_BINARY_OP(compile_int_add(comp_ctx, left, right, is_i32),
"compile int add fail.");
return true;
case INT_SUB:
DEF_INT_BINARY_OP(compile_int_sub(comp_ctx, left, right, is_i32),
"compile int sub fail.");
return true;
case INT_MUL:
DEF_INT_BINARY_OP(compile_int_mul(comp_ctx, left, right, is_i32),
"compile int mul fail.");
return true;
case INT_DIV_S:
case INT_DIV_U:
case INT_REM_S:
case INT_REM_U:
return compile_int_div(comp_ctx, func_ctx, arith_op, is_i32,
p_frame_ip);
default:
bh_assert(0);
return false;
}
fail:
return false;
}
static bool
compile_op_int_bitwise(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntBitwise bitwise_op, bool is_i32)
{
switch (bitwise_op) {
case INT_AND:
DEF_INT_BINARY_OP(
LLVMBuildAnd(comp_ctx->builder, left, right, "and"),
"llvm build and fail.");
return true;
case INT_OR:
DEF_INT_BINARY_OP(LLVMBuildOr(comp_ctx->builder, left, right, "or"),
"llvm build or fail.");
return true;
case INT_XOR:
DEF_INT_BINARY_OP(
LLVMBuildXor(comp_ctx->builder, left, right, "xor"),
"llvm build xor fail.");
return true;
default:
bh_assert(0);
return false;
}
fail:
return false;
}
static LLVMValueRef
compile_int_shl(AOTCompContext *comp_ctx, LLVMValueRef left, LLVMValueRef right,
bool is_i32)
{
LLVMValueRef res;
if (strcmp(comp_ctx->target_arch, "x86_64") != 0
&& strcmp(comp_ctx->target_arch, "i386") != 0)
SHIFT_COUNT_MASK;
/* Build shl */
LLVM_BUILD_OP(Shl, left, right, res, "shl", NULL);
return res;
}
static LLVMValueRef
compile_int_shr_s(AOTCompContext *comp_ctx, LLVMValueRef left,
LLVMValueRef right, bool is_i32)
{
LLVMValueRef res;
if (strcmp(comp_ctx->target_arch, "x86_64") != 0
&& strcmp(comp_ctx->target_arch, "i386") != 0)
SHIFT_COUNT_MASK;
/* Build shl */
LLVM_BUILD_OP(AShr, left, right, res, "shr_s", NULL);
return res;
}
static LLVMValueRef
compile_int_shr_u(AOTCompContext *comp_ctx, LLVMValueRef left,
LLVMValueRef right, bool is_i32)
{
LLVMValueRef res;
if (strcmp(comp_ctx->target_arch, "x86_64") != 0
&& strcmp(comp_ctx->target_arch, "i386") != 0)
SHIFT_COUNT_MASK;
/* Build shl */
LLVM_BUILD_OP(LShr, left, right, res, "shr_u", NULL);
return res;
}
static LLVMValueRef
compile_int_rot(AOTCompContext *comp_ctx, LLVMValueRef left, LLVMValueRef right,
bool is_rotl, bool is_i32)
{
LLVMValueRef bits_minus_shift_count, res, tmp_l, tmp_r;
char *name = is_rotl ? "rotl" : "rotr";
SHIFT_COUNT_MASK;
/* Calculate (bits - shif_count) */
LLVM_BUILD_OP(Sub, is_i32 ? I32_32 : I64_64, right, bits_minus_shift_count,
"bits_minus_shift_count", NULL);
if (is_rotl) {
/* left<<count | left>>(BITS-count) */
LLVM_BUILD_OP(Shl, left, right, tmp_l, "tmp_l", NULL);
LLVM_BUILD_OP(LShr, left, bits_minus_shift_count, tmp_r, "tmp_r", NULL);
}
else {
/* left>>count | left<<(BITS-count) */
LLVM_BUILD_OP(LShr, left, right, tmp_l, "tmp_l", NULL);
LLVM_BUILD_OP(Shl, left, bits_minus_shift_count, tmp_r, "tmp_r", NULL);
}
LLVM_BUILD_OP(Or, tmp_l, tmp_r, res, name, NULL);
return res;
}
static bool
compile_op_int_shift(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntShift shift_op, bool is_i32)
{
switch (shift_op) {
case INT_SHL:
DEF_INT_BINARY_OP(compile_int_shl(comp_ctx, left, right, is_i32),
NULL);
return true;
case INT_SHR_S:
DEF_INT_BINARY_OP(compile_int_shr_s(comp_ctx, left, right, is_i32),
NULL);
return true;
case INT_SHR_U:
DEF_INT_BINARY_OP(compile_int_shr_u(comp_ctx, left, right, is_i32),
NULL);
return true;
case INT_ROTL:
DEF_INT_BINARY_OP(
compile_int_rot(comp_ctx, left, right, true, is_i32), NULL);
return true;
case INT_ROTR:
DEF_INT_BINARY_OP(
compile_int_rot(comp_ctx, left, right, false, is_i32), NULL);
return true;
default:
bh_assert(0);
return false;
}
fail:
return false;
}
static bool
is_target_arm(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "arm", 3)
|| !strncmp(comp_ctx->target_arch, "aarch64", 7)
|| !strncmp(comp_ctx->target_arch, "thumb", 5);
}
static bool
is_target_x86(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "x86_64", 6)
|| !strncmp(comp_ctx->target_arch, "i386", 4);
}
static bool
is_target_xtensa(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "xtensa", 6);
}
static bool
is_target_mips(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "mips", 4);
}
static bool
is_target_riscv(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "riscv", 5);
}
static bool
is_targeting_soft_float(AOTCompContext *comp_ctx, bool is_f32)
{
bool ret = false;
char *feature_string;
if (!(feature_string =
LLVMGetTargetMachineFeatureString(comp_ctx->target_machine))) {
aot_set_last_error("llvm get target machine feature string fail.");
return false;
}
/* Note:
* LLVM CodeGen uses FPU Coprocessor registers by default,
* so user must specify '--cpu-features=+soft-float' to wamrc if the target
* doesn't have or enable FPU on arm, x86 or mips. */
if (is_target_arm(comp_ctx) || is_target_x86(comp_ctx)
|| is_target_mips(comp_ctx))
ret = strstr(feature_string, "+soft-float") ? true : false;
else if (is_target_xtensa(comp_ctx))
/* Note:
* 1. The Floating-Point Coprocessor Option of xtensa only support
* single-precision floating-point operations, so must use soft-float
* for f64(i.e. double).
* 2. LLVM CodeGen uses Floating-Point Coprocessor registers by default,
* so user must specify '--cpu-features=-fp' to wamrc if the target
* doesn't have or enable Floating-Point Coprocessor Option on xtensa.
*/
ret = (!is_f32 || strstr(feature_string, "-fp")) ? true : false;
else if (is_target_riscv(comp_ctx)) {
/*
* Note: Use builtin intrinsics since hardware float operation
* will cause rodata relocation, this will try to use hardware
* float unit (by return false) but handled by software finally
*/
if (comp_ctx->disable_llvm_intrinsics)
ret = false;
else
ret = !strstr(feature_string, "+d") ? true : false;
}
else
ret = true;
LLVMDisposeMessage(feature_string);
return ret;
}
static bool
compile_op_float_arithmetic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
FloatArithmetic arith_op, bool is_f32)
{
switch (arith_op) {
case FLOAT_ADD:
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(
LLVMBuildFAdd(comp_ctx->builder, left, right, "fadd"),
"llvm build fadd fail.");
else
DEF_FP_BINARY_OP(
call_llvm_float_experimental_constrained_intrinsic(
comp_ctx, func_ctx, is_f32,
(is_f32 ? "llvm.experimental.constrained.fadd.f32"
: "llvm.experimental.constrained.fadd.f64"),
left, right, comp_ctx->fp_rounding_mode,
comp_ctx->fp_exception_behavior),
NULL);
return true;
case FLOAT_SUB:
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(
LLVMBuildFSub(comp_ctx->builder, left, right, "fsub"),
"llvm build fsub fail.");
else
DEF_FP_BINARY_OP(
call_llvm_float_experimental_constrained_intrinsic(
comp_ctx, func_ctx, is_f32,
(is_f32 ? "llvm.experimental.constrained.fsub.f32"
: "llvm.experimental.constrained.fsub.f64"),
left, right, comp_ctx->fp_rounding_mode,
comp_ctx->fp_exception_behavior),
NULL);
return true;
case FLOAT_MUL:
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(
LLVMBuildFMul(comp_ctx->builder, left, right, "fmul"),
"llvm build fmul fail.");
else
DEF_FP_BINARY_OP(
call_llvm_float_experimental_constrained_intrinsic(
comp_ctx, func_ctx, is_f32,
(is_f32 ? "llvm.experimental.constrained.fmul.f32"
: "llvm.experimental.constrained.fmul.f64"),
left, right, comp_ctx->fp_rounding_mode,
comp_ctx->fp_exception_behavior),
NULL);
return true;
case FLOAT_DIV:
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(
LLVMBuildFDiv(comp_ctx->builder, left, right, "fdiv"),
"llvm build fdiv fail.");
else
DEF_FP_BINARY_OP(
call_llvm_float_experimental_constrained_intrinsic(
comp_ctx, func_ctx, is_f32,
(is_f32 ? "llvm.experimental.constrained.fdiv.f32"
: "llvm.experimental.constrained.fdiv.f64"),
left, right, comp_ctx->fp_rounding_mode,
comp_ctx->fp_exception_behavior),
NULL);
return true;
case FLOAT_MIN:
DEF_FP_BINARY_OP(compile_op_float_min_max(
comp_ctx, func_ctx, is_f32, left, right, true),
NULL);
return true;
case FLOAT_MAX:
DEF_FP_BINARY_OP(compile_op_float_min_max(comp_ctx, func_ctx,
is_f32, left, right,
false),
NULL);
return true;
default:
bh_assert(0);
return false;
}
fail:
return false;
}
static LLVMValueRef
call_llvm_float_math_intrinsic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx, bool is_f32,
const char *intrinsic, ...)
{
va_list param_value_list;
LLVMValueRef ret;
LLVMTypeRef param_type, ret_type = is_f32 ? F32_TYPE : F64_TYPE;
param_type = ret_type;
va_start(param_value_list, intrinsic);
ret = aot_call_llvm_intrinsic_v(comp_ctx, func_ctx, intrinsic, ret_type,
&param_type, 1, param_value_list);
va_end(param_value_list);
return ret;
}
static bool
compile_op_float_math(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
FloatMath math_op, bool is_f32)
{
switch (math_op) {
case FLOAT_ABS:
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(
comp_ctx, func_ctx, is_f32,
is_f32 ? "llvm.fabs.f32" : "llvm.fabs.f64",
operand),
NULL);
return true;
case FLOAT_NEG:
DEF_FP_UNARY_OP(LLVMBuildFNeg(comp_ctx->builder, operand, "fneg"),
"llvm build fneg fail.");
return true;
case FLOAT_CEIL:
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(
comp_ctx, func_ctx, is_f32,
is_f32 ? "llvm.ceil.f32" : "llvm.ceil.f64",
operand),
NULL);
return true;
case FLOAT_FLOOR:
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(
comp_ctx, func_ctx, is_f32,
is_f32 ? "llvm.floor.f32" : "llvm.floor.f64",
operand),
NULL);
return true;
case FLOAT_TRUNC:
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(
comp_ctx, func_ctx, is_f32,
is_f32 ? "llvm.trunc.f32" : "llvm.trunc.f64",
operand),
NULL);
return true;
case FLOAT_NEAREST:
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(
comp_ctx, func_ctx, is_f32,
is_f32 ? "llvm.rint.f32" : "llvm.rint.f64",
operand),
NULL);
return true;
case FLOAT_SQRT:
if (is_targeting_soft_float(comp_ctx, is_f32)
|| comp_ctx->disable_llvm_intrinsics)
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(
comp_ctx, func_ctx, is_f32,
is_f32 ? "llvm.sqrt.f32" : "llvm.sqrt.f64",
operand),
NULL);
else
DEF_FP_UNARY_OP(
call_llvm_libm_experimental_constrained_intrinsic(
comp_ctx, func_ctx, is_f32,
(is_f32 ? "llvm.experimental.constrained.sqrt.f32"
: "llvm.experimental.constrained.sqrt.f64"),
operand, comp_ctx->fp_rounding_mode,
comp_ctx->fp_exception_behavior),
NULL);
return true;
default:
bh_assert(0);
return false;
}
return true;
fail:
return false;
}
static bool
compile_float_copysign(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
bool is_f32)
{
LLVMTypeRef ret_type, param_types[2];
param_types[0] = param_types[1] = ret_type = is_f32 ? F32_TYPE : F64_TYPE;
DEF_FP_BINARY_OP(aot_call_llvm_intrinsic(
comp_ctx, func_ctx,
is_f32 ? "llvm.copysign.f32" : "llvm.copysign.f64",
ret_type, param_types, 2, left, right),
NULL);
return true;
fail:
return false;
}
bool
aot_compile_op_i32_clz(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return aot_compile_int_bit_count(comp_ctx, func_ctx, CLZ32, true);
}
bool
aot_compile_op_i32_ctz(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return aot_compile_int_bit_count(comp_ctx, func_ctx, CTZ32, true);
}
bool
aot_compile_op_i32_popcnt(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return aot_compile_int_bit_count(comp_ctx, func_ctx, POP_CNT32, true);
}
bool
aot_compile_op_i64_clz(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return aot_compile_int_bit_count(comp_ctx, func_ctx, CLZ64, false);
}
bool
aot_compile_op_i64_ctz(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return aot_compile_int_bit_count(comp_ctx, func_ctx, CTZ64, false);
}
bool
aot_compile_op_i64_popcnt(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return aot_compile_int_bit_count(comp_ctx, func_ctx, POP_CNT64, false);
}
bool
aot_compile_op_i32_arithmetic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx, IntArithmetic arith_op,
uint8 **p_frame_ip)
{
return compile_op_int_arithmetic(comp_ctx, func_ctx, arith_op, true,
p_frame_ip);
}
bool
aot_compile_op_i64_arithmetic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx, IntArithmetic arith_op,
uint8 **p_frame_ip)
{
return compile_op_int_arithmetic(comp_ctx, func_ctx, arith_op, false,
p_frame_ip);
}
bool
aot_compile_op_i32_bitwise(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntBitwise bitwise_op)
{
return compile_op_int_bitwise(comp_ctx, func_ctx, bitwise_op, true);
}
bool
aot_compile_op_i64_bitwise(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntBitwise bitwise_op)
{
return compile_op_int_bitwise(comp_ctx, func_ctx, bitwise_op, false);
}
bool
aot_compile_op_i32_shift(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntShift shift_op)
{
return compile_op_int_shift(comp_ctx, func_ctx, shift_op, true);
}
bool
aot_compile_op_i64_shift(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
IntShift shift_op)
{
return compile_op_int_shift(comp_ctx, func_ctx, shift_op, false);
}
bool
aot_compile_op_f32_math(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
FloatMath math_op)
{
return compile_op_float_math(comp_ctx, func_ctx, math_op, true);
}
bool
aot_compile_op_f64_math(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
FloatMath math_op)
{
return compile_op_float_math(comp_ctx, func_ctx, math_op, false);
}
bool
aot_compile_op_f32_arithmetic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx,
FloatArithmetic arith_op)
{
return compile_op_float_arithmetic(comp_ctx, func_ctx, arith_op, true);
}
bool
aot_compile_op_f64_arithmetic(AOTCompContext *comp_ctx,
AOTFuncContext *func_ctx,
FloatArithmetic arith_op)
{
return compile_op_float_arithmetic(comp_ctx, func_ctx, arith_op, false);
}
bool
aot_compile_op_f32_copysign(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return compile_float_copysign(comp_ctx, func_ctx, true);
}
bool
aot_compile_op_f64_copysign(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
{
return compile_float_copysign(comp_ctx, func_ctx, false);
}