This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/iwasm/common/wasm_memory.c
Andy 3e8927a31b
Adding option to pass user data to allocator functions (#1765)
Add an option to pass user data to the allocator functions. It is common to
do this so that the host embedder can pass a struct as user data and access
that struct from the allocator, which gives the host embedder the ability to
do things such as track allocation statistics within the allocator.

Compile with `cmake -DWASM_MEM_ALLOC_WITH_USER_DATA=1` to enable
the option, and the allocator functions provided by the host embedder should
be like below (an extra argument `data` is added):
void *malloc(void *data, uint32 size) { .. }
void *realloc(void *data, uint32 size) { .. }
void free(void *data, void *ptr) { .. }

Signed-off-by: Andrew Chambers <ncham@amazon.com>
2022-11-30 16:19:18 +08:00

700 lines
21 KiB
C

/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasm_runtime_common.h"
#include "../interpreter/wasm_runtime.h"
#include "bh_platform.h"
#include "mem_alloc.h"
typedef enum Memory_Mode {
MEMORY_MODE_UNKNOWN = 0,
MEMORY_MODE_POOL,
MEMORY_MODE_ALLOCATOR,
MEMORY_MODE_SYSTEM_ALLOCATOR
} Memory_Mode;
static Memory_Mode memory_mode = MEMORY_MODE_UNKNOWN;
static mem_allocator_t pool_allocator = NULL;
#if WASM_MEM_ALLOC_WITH_USER_DATA != 0
static void *allocator_user_data = NULL;
static void *(*malloc_func)(void *user_data, unsigned int size) = NULL;
static void *(*realloc_func)(void *user_data, void *ptr,
unsigned int size) = NULL;
static void (*free_func)(void *user_data, void *ptr) = NULL;
#else
static void *(*malloc_func)(unsigned int size) = NULL;
static void *(*realloc_func)(void *ptr, unsigned int size) = NULL;
static void (*free_func)(void *ptr) = NULL;
#endif
static unsigned int global_pool_size;
static bool
wasm_memory_init_with_pool(void *mem, unsigned int bytes)
{
mem_allocator_t _allocator = mem_allocator_create(mem, bytes);
if (_allocator) {
memory_mode = MEMORY_MODE_POOL;
pool_allocator = _allocator;
global_pool_size = bytes;
return true;
}
LOG_ERROR("Init memory with pool (%p, %u) failed.\n", mem, bytes);
return false;
}
#if WASM_MEM_ALLOC_WITH_USER_DATA != 0
static bool
wasm_memory_init_with_allocator(void *_user_data, void *_malloc_func,
void *_realloc_func, void *_free_func)
{
if (_malloc_func && _free_func && _malloc_func != _free_func) {
memory_mode = MEMORY_MODE_ALLOCATOR;
allocator_user_data = _user_data;
malloc_func = _malloc_func;
realloc_func = _realloc_func;
free_func = _free_func;
return true;
}
LOG_ERROR("Init memory with allocator (%p, %p, %p, %p) failed.\n",
_user_data, _malloc_func, _realloc_func, _free_func);
return false;
}
#else
static bool
wasm_memory_init_with_allocator(void *_malloc_func, void *_realloc_func,
void *_free_func)
{
if (_malloc_func && _free_func && _malloc_func != _free_func) {
memory_mode = MEMORY_MODE_ALLOCATOR;
malloc_func = _malloc_func;
realloc_func = _realloc_func;
free_func = _free_func;
return true;
}
LOG_ERROR("Init memory with allocator (%p, %p, %p) failed.\n", _malloc_func,
_realloc_func, _free_func);
return false;
}
#endif
bool
wasm_runtime_memory_init(mem_alloc_type_t mem_alloc_type,
const MemAllocOption *alloc_option)
{
if (mem_alloc_type == Alloc_With_Pool) {
return wasm_memory_init_with_pool(alloc_option->pool.heap_buf,
alloc_option->pool.heap_size);
}
else if (mem_alloc_type == Alloc_With_Allocator) {
#if WASM_MEM_ALLOC_WITH_USER_DATA != 0
return wasm_memory_init_with_allocator(
alloc_option->allocator.user_data,
alloc_option->allocator.malloc_func,
alloc_option->allocator.realloc_func,
alloc_option->allocator.free_func);
#else
return wasm_memory_init_with_allocator(
alloc_option->allocator.malloc_func,
alloc_option->allocator.realloc_func,
alloc_option->allocator.free_func);
#endif
}
else if (mem_alloc_type == Alloc_With_System_Allocator) {
memory_mode = MEMORY_MODE_SYSTEM_ALLOCATOR;
return true;
}
else {
return false;
}
}
void
wasm_runtime_memory_destroy()
{
if (memory_mode == MEMORY_MODE_POOL) {
#if BH_ENABLE_GC_VERIFY == 0
(void)mem_allocator_destroy(pool_allocator);
#else
int ret = mem_allocator_destroy(pool_allocator);
if (ret != 0) {
/* Memory leak detected */
exit(-1);
}
#endif
}
memory_mode = MEMORY_MODE_UNKNOWN;
}
unsigned
wasm_runtime_memory_pool_size()
{
if (memory_mode == MEMORY_MODE_POOL)
return global_pool_size;
else
return UINT32_MAX;
}
static inline void *
wasm_runtime_malloc_internal(unsigned int size)
{
if (memory_mode == MEMORY_MODE_UNKNOWN) {
LOG_WARNING(
"wasm_runtime_malloc failed: memory hasn't been initialize.\n");
return NULL;
}
else if (memory_mode == MEMORY_MODE_POOL) {
return mem_allocator_malloc(pool_allocator, size);
}
else if (memory_mode == MEMORY_MODE_ALLOCATOR) {
#if WASM_MEM_ALLOC_WITH_USER_DATA != 0
return malloc_func(allocator_user_data, size);
#else
return malloc_func(size);
#endif
}
else {
return os_malloc(size);
}
}
static inline void *
wasm_runtime_realloc_internal(void *ptr, unsigned int size)
{
if (memory_mode == MEMORY_MODE_UNKNOWN) {
LOG_WARNING(
"wasm_runtime_realloc failed: memory hasn't been initialize.\n");
return NULL;
}
else if (memory_mode == MEMORY_MODE_POOL) {
return mem_allocator_realloc(pool_allocator, ptr, size);
}
else if (memory_mode == MEMORY_MODE_ALLOCATOR) {
if (realloc_func)
#if WASM_MEM_ALLOC_WITH_USER_DATA != 0
return realloc_func(allocator_user_data, ptr, size);
#else
return realloc_func(ptr, size);
#endif
else
return NULL;
}
else {
return os_realloc(ptr, size);
}
}
static inline void
wasm_runtime_free_internal(void *ptr)
{
if (!ptr) {
LOG_WARNING("warning: wasm_runtime_free with NULL pointer\n");
#if BH_ENABLE_GC_VERIFY != 0
exit(-1);
#endif
return;
}
if (memory_mode == MEMORY_MODE_UNKNOWN) {
LOG_WARNING("warning: wasm_runtime_free failed: "
"memory hasn't been initialize.\n");
}
else if (memory_mode == MEMORY_MODE_POOL) {
mem_allocator_free(pool_allocator, ptr);
}
else if (memory_mode == MEMORY_MODE_ALLOCATOR) {
#if WASM_MEM_ALLOC_WITH_USER_DATA != 0
free_func(allocator_user_data, ptr);
#else
free_func(ptr);
#endif
}
else {
os_free(ptr);
}
}
void *
wasm_runtime_malloc(unsigned int size)
{
if (size == 0) {
LOG_WARNING("warning: wasm_runtime_malloc with size zero\n");
/* At lease alloc 1 byte to avoid malloc failed */
size = 1;
#if BH_ENABLE_GC_VERIFY != 0
exit(-1);
#endif
}
return wasm_runtime_malloc_internal(size);
}
void *
wasm_runtime_realloc(void *ptr, unsigned int size)
{
return wasm_runtime_realloc_internal(ptr, size);
}
void
wasm_runtime_free(void *ptr)
{
wasm_runtime_free_internal(ptr);
}
bool
wasm_runtime_get_mem_alloc_info(mem_alloc_info_t *mem_alloc_info)
{
if (memory_mode == MEMORY_MODE_POOL) {
return mem_allocator_get_alloc_info(pool_allocator, mem_alloc_info);
}
return false;
}
bool
wasm_runtime_validate_app_addr(WASMModuleInstanceCommon *module_inst_comm,
uint32 app_offset, uint32 size)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
WASMMemoryInstance *memory_inst;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
memory_inst = wasm_get_default_memory(module_inst);
if (!memory_inst) {
goto fail;
}
/* integer overflow check */
if (app_offset > UINT32_MAX - size) {
goto fail;
}
if (app_offset + size <= memory_inst->memory_data_size) {
return true;
}
fail:
wasm_set_exception(module_inst, "out of bounds memory access");
return false;
}
bool
wasm_runtime_validate_app_str_addr(WASMModuleInstanceCommon *module_inst_comm,
uint32 app_str_offset)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
uint32 app_end_offset;
char *str, *str_end;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
if (!wasm_runtime_get_app_addr_range(module_inst_comm, app_str_offset, NULL,
&app_end_offset))
goto fail;
str = wasm_runtime_addr_app_to_native(module_inst_comm, app_str_offset);
str_end = str + (app_end_offset - app_str_offset);
while (str < str_end && *str != '\0')
str++;
if (str == str_end)
goto fail;
return true;
fail:
wasm_set_exception(module_inst, "out of bounds memory access");
return false;
}
bool
wasm_runtime_validate_native_addr(WASMModuleInstanceCommon *module_inst_comm,
void *native_ptr, uint32 size)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
WASMMemoryInstance *memory_inst;
uint8 *addr = (uint8 *)native_ptr;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
memory_inst = wasm_get_default_memory(module_inst);
if (!memory_inst) {
goto fail;
}
/* integer overflow check */
if ((uintptr_t)addr > UINTPTR_MAX - size) {
goto fail;
}
if (memory_inst->memory_data <= addr
&& addr + size <= memory_inst->memory_data_end) {
return true;
}
fail:
wasm_set_exception(module_inst, "out of bounds memory access");
return false;
}
void *
wasm_runtime_addr_app_to_native(WASMModuleInstanceCommon *module_inst_comm,
uint32 app_offset)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
WASMMemoryInstance *memory_inst;
uint8 *addr;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
memory_inst = wasm_get_default_memory(module_inst);
if (!memory_inst) {
return NULL;
}
addr = memory_inst->memory_data + app_offset;
if (memory_inst->memory_data <= addr && addr < memory_inst->memory_data_end)
return addr;
return NULL;
}
uint32
wasm_runtime_addr_native_to_app(WASMModuleInstanceCommon *module_inst_comm,
void *native_ptr)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
WASMMemoryInstance *memory_inst;
uint8 *addr = (uint8 *)native_ptr;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
memory_inst = wasm_get_default_memory(module_inst);
if (!memory_inst) {
return 0;
}
if (memory_inst->memory_data <= addr && addr < memory_inst->memory_data_end)
return (uint32)(addr - memory_inst->memory_data);
return 0;
}
bool
wasm_runtime_get_app_addr_range(WASMModuleInstanceCommon *module_inst_comm,
uint32 app_offset, uint32 *p_app_start_offset,
uint32 *p_app_end_offset)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
WASMMemoryInstance *memory_inst;
uint32 memory_data_size;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
memory_inst = wasm_get_default_memory(module_inst);
if (!memory_inst) {
return false;
}
memory_data_size = memory_inst->memory_data_size;
if (app_offset < memory_data_size) {
if (p_app_start_offset)
*p_app_start_offset = 0;
if (p_app_end_offset)
*p_app_end_offset = memory_data_size;
return true;
}
return false;
}
bool
wasm_runtime_get_native_addr_range(WASMModuleInstanceCommon *module_inst_comm,
uint8 *native_ptr,
uint8 **p_native_start_addr,
uint8 **p_native_end_addr)
{
WASMModuleInstance *module_inst = (WASMModuleInstance *)module_inst_comm;
WASMMemoryInstance *memory_inst;
uint8 *addr = (uint8 *)native_ptr;
bh_assert(module_inst_comm->module_type == Wasm_Module_Bytecode
|| module_inst_comm->module_type == Wasm_Module_AoT);
memory_inst = wasm_get_default_memory(module_inst);
if (!memory_inst) {
return false;
}
if (memory_inst->memory_data <= addr
&& addr < memory_inst->memory_data_end) {
if (p_native_start_addr)
*p_native_start_addr = memory_inst->memory_data;
if (p_native_end_addr)
*p_native_end_addr = memory_inst->memory_data_end;
return true;
}
return false;
}
bool
wasm_check_app_addr_and_convert(WASMModuleInstance *module_inst, bool is_str,
uint32 app_buf_addr, uint32 app_buf_size,
void **p_native_addr)
{
WASMMemoryInstance *memory_inst = wasm_get_default_memory(module_inst);
uint8 *native_addr;
if (!memory_inst) {
goto fail;
}
native_addr = memory_inst->memory_data + app_buf_addr;
/* No need to check the app_offset and buf_size if memory access
boundary check with hardware trap is enabled */
#ifndef OS_ENABLE_HW_BOUND_CHECK
if (app_buf_addr >= memory_inst->memory_data_size) {
goto fail;
}
if (!is_str) {
if (app_buf_size > memory_inst->memory_data_size - app_buf_addr) {
goto fail;
}
}
else {
const char *str, *str_end;
/* The whole string must be in the linear memory */
str = (const char *)native_addr;
str_end = (const char *)memory_inst->memory_data_end;
while (str < str_end && *str != '\0')
str++;
if (str == str_end)
goto fail;
}
#endif
*p_native_addr = (void *)native_addr;
return true;
fail:
wasm_set_exception(module_inst, "out of bounds memory access");
return false;
}
WASMMemoryInstance *
wasm_get_default_memory(WASMModuleInstance *module_inst)
{
if (module_inst->memories)
return module_inst->memories[0];
else
return NULL;
}
#ifndef OS_ENABLE_HW_BOUND_CHECK
bool
wasm_enlarge_memory(WASMModuleInstance *module, uint32 inc_page_count)
{
WASMMemoryInstance *memory = wasm_get_default_memory(module);
uint8 *memory_data_old, *memory_data_new, *heap_data_old;
uint32 num_bytes_per_page, heap_size, total_size_old;
uint32 cur_page_count, max_page_count, total_page_count;
uint64 total_size_new;
bool ret = true;
if (!memory)
return false;
heap_data_old = memory->heap_data;
heap_size = (uint32)(memory->heap_data_end - memory->heap_data);
memory_data_old = memory->memory_data;
total_size_old = memory->memory_data_size;
num_bytes_per_page = memory->num_bytes_per_page;
cur_page_count = memory->cur_page_count;
max_page_count = memory->max_page_count;
total_page_count = inc_page_count + cur_page_count;
total_size_new = num_bytes_per_page * (uint64)total_page_count;
if (inc_page_count <= 0)
/* No need to enlarge memory */
return true;
if (total_page_count < cur_page_count /* integer overflow */
|| total_page_count > max_page_count) {
return false;
}
bh_assert(total_size_new <= 4 * (uint64)BH_GB);
if (total_size_new > UINT32_MAX) {
/* Resize to 1 page with size 4G-1 */
num_bytes_per_page = UINT32_MAX;
total_page_count = max_page_count = 1;
total_size_new = UINT32_MAX;
}
#if WASM_ENABLE_SHARED_MEMORY != 0
if (memory->is_shared) {
memory->num_bytes_per_page = num_bytes_per_page;
memory->cur_page_count = total_page_count;
memory->max_page_count = max_page_count;
/* No need to update memory->memory_data_size as it is
initialized with the maximum memory data size for
shared memory */
return true;
}
#endif
if (heap_size > 0) {
if (mem_allocator_is_heap_corrupted(memory->heap_handle)) {
wasm_runtime_show_app_heap_corrupted_prompt();
return false;
}
}
if (!(memory_data_new =
wasm_runtime_realloc(memory_data_old, (uint32)total_size_new))) {
if (!(memory_data_new = wasm_runtime_malloc((uint32)total_size_new))) {
return false;
}
if (memory_data_old) {
bh_memcpy_s(memory_data_new, (uint32)total_size_new,
memory_data_old, total_size_old);
wasm_runtime_free(memory_data_old);
}
}
memset(memory_data_new + total_size_old, 0,
(uint32)total_size_new - total_size_old);
if (heap_size > 0) {
if (mem_allocator_migrate(memory->heap_handle,
(char *)heap_data_old
+ (memory_data_new - memory_data_old),
heap_size)
!= 0) {
/* Don't return here as memory->memory_data is obsolete and
must be updated to be correctly used later. */
ret = false;
}
}
memory->heap_data = memory_data_new + (heap_data_old - memory_data_old);
memory->heap_data_end = memory->heap_data + heap_size;
memory->num_bytes_per_page = num_bytes_per_page;
memory->cur_page_count = total_page_count;
memory->max_page_count = max_page_count;
memory->memory_data_size = (uint32)total_size_new;
memory->memory_data = memory_data_new;
memory->memory_data_end = memory_data_new + (uint32)total_size_new;
#if WASM_ENABLE_FAST_JIT != 0 || WASM_ENABLE_JIT != 0 || WASM_ENABLE_AOT != 0
#if UINTPTR_MAX == UINT64_MAX
memory->mem_bound_check_1byte.u64 = total_size_new - 1;
memory->mem_bound_check_2bytes.u64 = total_size_new - 2;
memory->mem_bound_check_4bytes.u64 = total_size_new - 4;
memory->mem_bound_check_8bytes.u64 = total_size_new - 8;
memory->mem_bound_check_16bytes.u64 = total_size_new - 16;
#else
memory->mem_bound_check_1byte.u32[0] = (uint32)total_size_new - 1;
memory->mem_bound_check_2bytes.u32[0] = (uint32)total_size_new - 2;
memory->mem_bound_check_4bytes.u32[0] = (uint32)total_size_new - 4;
memory->mem_bound_check_8bytes.u32[0] = (uint32)total_size_new - 8;
memory->mem_bound_check_16bytes.u32[0] = (uint32)total_size_new - 16;
#endif
#endif
return ret;
}
#else
bool
wasm_enlarge_memory(WASMModuleInstance *module, uint32 inc_page_count)
{
WASMMemoryInstance *memory = wasm_get_default_memory(module);
uint32 num_bytes_per_page, total_size_old;
uint32 cur_page_count, max_page_count, total_page_count;
uint64 total_size_new;
if (!memory)
return false;
num_bytes_per_page = memory->num_bytes_per_page;
cur_page_count = memory->cur_page_count;
max_page_count = memory->max_page_count;
total_size_old = num_bytes_per_page * cur_page_count;
total_page_count = inc_page_count + cur_page_count;
total_size_new = num_bytes_per_page * (uint64)total_page_count;
if (inc_page_count <= 0)
/* No need to enlarge memory */
return true;
if (total_page_count < cur_page_count /* integer overflow */
|| total_page_count > max_page_count) {
return false;
}
bh_assert(total_size_new <= 4 * (uint64)BH_GB);
if (total_size_new > UINT32_MAX) {
/* Resize to 1 page with size 4G-1 */
num_bytes_per_page = UINT32_MAX;
total_page_count = max_page_count = 1;
total_size_new = UINT32_MAX;
}
#ifdef BH_PLATFORM_WINDOWS
if (!os_mem_commit(memory->memory_data_end,
(uint32)total_size_new - total_size_old,
MMAP_PROT_READ | MMAP_PROT_WRITE)) {
return false;
}
#endif
if (os_mprotect(memory->memory_data_end,
(uint32)total_size_new - total_size_old,
MMAP_PROT_READ | MMAP_PROT_WRITE)
!= 0) {
#ifdef BH_PLATFORM_WINDOWS
os_mem_decommit(memory->memory_data_end,
(uint32)total_size_new - total_size_old);
#endif
return false;
}
/* The increased pages are filled with zero by the OS when os_mmap,
no need to memset it again here */
memory->num_bytes_per_page = num_bytes_per_page;
memory->cur_page_count = total_page_count;
memory->max_page_count = max_page_count;
memory->memory_data_size = (uint32)total_size_new;
memory->memory_data_end = memory->memory_data + (uint32)total_size_new;
#if WASM_ENABLE_FAST_JIT != 0 || WASM_ENABLE_JIT != 0 || WASM_ENABLE_AOT != 0
memory->mem_bound_check_1byte.u64 = total_size_new - 1;
memory->mem_bound_check_2bytes.u64 = total_size_new - 2;
memory->mem_bound_check_4bytes.u64 = total_size_new - 4;
memory->mem_bound_check_8bytes.u64 = total_size_new - 8;
memory->mem_bound_check_16bytes.u64 = total_size_new - 16;
#endif
return true;
}
#endif /* end of OS_ENABLE_HW_BOUND_CHECK */