This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/shared-lib/mem-alloc/ems/ems_alloc.c
2019-05-07 10:18:18 +08:00

591 lines
16 KiB
C

/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ems_gc_internal.h"
#if !defined(NVALGRIND)
#include <valgrind/memcheck.h>
#endif
static int hmu_is_in_heap(gc_heap_t* heap, hmu_t* hmu)
{
return heap && hmu && (gc_uint8*) hmu >= heap->base_addr
&& (gc_uint8*) hmu < heap->base_addr + heap->current_size;
}
/* Remove a node from the tree it belongs to*/
/* @p can not be NULL*/
/* @p can not be the ROOT node*/
/* Node @p will be removed from the tree and left,right,parent pointers of node @p will be*/
/* set to be NULL. Other fields will not be touched.*/
/* The tree will be re-organized so that the order conditions are still satisified.*/
BH_STATIC void remove_tree_node(hmu_tree_node_t *p)
{
hmu_tree_node_t *q = NULL, **slot = NULL;
bh_assert(p);
bh_assert(p->parent); /* @p can not be the ROOT node*/
/* get the slot which holds pointer to node p*/
if (p == p->parent->right) {
slot = &p->parent->right;
} else {
bh_assert(p == p->parent->left); /* @p should be a child of its parent*/
slot = &p->parent->left;
}
/* algorithms used to remove node p*/
/* case 1: if p has no left child, replace p with its right child*/
/* case 2: if p has no right child, replace p with its left child*/
/* case 3: otherwise, find p's predecessor, remove it from the tree and replace p with it.*/
/* use predecessor can keep the left <= root < right condition.*/
if (!p->left) {
/* move right child up*/
*slot = p->right;
if (p->right)
p->right->parent = p->parent;
p->left = p->right = p->parent = NULL;
return;
}
if (!p->right) {
/* move left child up*/
*slot = p->left;
p->left->parent = p->parent; /* p->left can never be NULL.*/
p->left = p->right = p->parent = NULL;
return;
}
/* both left & right exist, find p's predecessor at first*/
q = p->left;
while (q->right)
q = q->right;
remove_tree_node(q); /* remove from the tree*/
*slot = q;
q->parent = p->parent;
q->left = p->left;
q->right = p->right;
if (q->left)
q->left->parent = q;
if (q->right)
q->right->parent = q;
p->left = p->right = p->parent = NULL;
}
static void unlink_hmu(gc_heap_t *heap, hmu_t *hmu)
{
gc_size_t size;
bh_assert(gci_is_heap_valid(heap));
bh_assert(
hmu && (gc_uint8*) hmu >= heap->base_addr
&& (gc_uint8*) hmu < heap->base_addr + heap->current_size);
bh_assert(hmu_get_ut(hmu) == HMU_FC);
size = hmu_get_size(hmu);
if (HMU_IS_FC_NORMAL(size)) {
int node_idx = size >> 3;
hmu_normal_node_t* node = heap->kfc_normal_list[node_idx].next;
hmu_normal_node_t** p = &(heap->kfc_normal_list[node_idx].next);
while (node) {
if ((hmu_t*) node == hmu) {
*p = node->next;
break;
}
p = &(node->next);
node = node->next;
}
if (!node) {
printf("[GC_ERROR]couldn't find the node in the normal list");
}
} else {
remove_tree_node((hmu_tree_node_t *) hmu);
}
}
static void hmu_set_free_size(hmu_t *hmu)
{
gc_size_t size;
bh_assert(hmu && hmu_get_ut(hmu) == HMU_FC);
size = hmu_get_size(hmu);
*((int*) ((char*) hmu + size) - 1) = size;
}
/* Add free chunk back to KFC*/
/* @heap should not be NULL and it should be a valid heap*/
/* @hmu should not be NULL and it should be a HMU of length @size inside @heap*/
/* @hmu should be aligned to 8*/
/* @size should be positive and multiple of 8*/
/* @hmu with size @size will be added into KFC as a new FC.*/
void gci_add_fc(gc_heap_t *heap, hmu_t *hmu, gc_size_t size)
{
hmu_normal_node_t *np = NULL;
hmu_tree_node_t *root = NULL, *tp = NULL, *node = NULL;
int node_idx;
bh_assert(gci_is_heap_valid(heap));
bh_assert(
hmu && (gc_uint8*) hmu >= heap->base_addr
&& (gc_uint8*) hmu < heap->base_addr + heap->current_size);
bh_assert(((gc_uint32) hmu_to_obj(hmu) & 7) == 0);
bh_assert(
size > 0
&& ((gc_uint8*) hmu) + size
<= heap->base_addr + heap->current_size);
bh_assert(!(size & 7));
hmu_set_ut(hmu, HMU_FC);
hmu_set_size(hmu, size);
hmu_set_free_size(hmu);
if (HMU_IS_FC_NORMAL(size)) {
np = (hmu_normal_node_t*) hmu;
node_idx = size >> 3;
np->next = heap->kfc_normal_list[node_idx].next;
heap->kfc_normal_list[node_idx].next = np;
return;
}
/* big block*/
node = (hmu_tree_node_t*) hmu;
node->size = size;
node->left = node->right = node->parent = NULL;
/* find proper node to link this new node to*/
root = &heap->kfc_tree_root;
tp = root;
bh_assert(tp->size < size);
while (1) {
if (tp->size < size) {
if (!tp->right) {
tp->right = node;
node->parent = tp;
break;
}
tp = tp->right;
} else /* tp->size >= size*/
{
if (!tp->left) {
tp->left = node;
node->parent = tp;
break;
}
tp = tp->left;
}
}
}
/* Find a proper hmu for required memory size*/
/* @heap should not be NULL and it should be a valid heap*/
/* @size should cover the header and it should be 8 bytes aligned*/
/* GC will not be performed here.*/
/* Heap extension will not be performed here.*/
/* A proper HMU will be returned. This HMU can include the header and given size. The returned HMU will be aligned to 8 bytes.*/
/* NULL will be returned if there are no proper HMU.*/
BH_STATIC hmu_t *alloc_hmu(gc_heap_t *heap, gc_size_t size)
{
hmu_normal_node_t *node = NULL, *p = NULL;
int node_idx = 0, init_node_idx = 0;
hmu_tree_node_t *root = NULL, *tp = NULL, *last_tp = NULL;
hmu_t *next, *rest;
bh_assert(gci_is_heap_valid(heap));
bh_assert(size > 0 && !(size & 7));
if (size < GC_SMALLEST_SIZE)
size = GC_SMALLEST_SIZE;
/* check normal list at first*/
if (HMU_IS_FC_NORMAL(size)) {
/* find a non-empty slot in normal_node_list with good size*/
init_node_idx = (int) (size >> 3);
for (node_idx = init_node_idx; node_idx < HMU_NORMAL_NODE_CNT;
node_idx++) {
node = heap->kfc_normal_list + node_idx;
if (node->next)
break;
node = NULL;
}
/* not found in normal list*/
if (node) {
bh_assert(node_idx >= init_node_idx);
p = node->next;
node->next = p->next;
bh_assert(((gc_int32) hmu_to_obj(p) & 7) == 0);
if ((gc_size_t) node_idx
!= init_node_idx&& ((gc_size_t)node_idx << 3) >= size + GC_SMALLEST_SIZE) { /* with bigger size*/
rest = (hmu_t*) (((char *) p) + size);
gci_add_fc(heap, rest, (node_idx << 3) - size);
hmu_mark_pinuse(rest);
} else {
size = node_idx << 3;
next = (hmu_t*) ((char*) p + size);
if (hmu_is_in_heap(heap, next))
hmu_mark_pinuse(next);
}
#if GC_STAT_DATA != 0
heap->total_free_size -= size;
if ((heap->current_size - heap->total_free_size)
> heap->highmark_size)
heap->highmark_size = heap->current_size
- heap->total_free_size;
#endif
hmu_set_size((hmu_t* ) p, size);
return (hmu_t*) p;
}
}
/* need to find a node in tree*/
root = &heap->kfc_tree_root;
/* find the best node*/
bh_assert(root);
tp = root->right;
while (tp) {
if (tp->size < size) {
tp = tp->right;
continue;
}
/* record the last node with size equal to or bigger than given size*/
last_tp = tp;
tp = tp->left;
}
if (last_tp) {
bh_assert(last_tp->size >= size);
/* alloc in last_p*/
/* remove node last_p from tree*/
remove_tree_node(last_tp);
if (last_tp->size >= size + GC_SMALLEST_SIZE) {
rest = (hmu_t*) ((char*) last_tp + size);
gci_add_fc(heap, rest, last_tp->size - size);
hmu_mark_pinuse(rest);
} else {
size = last_tp->size;
next = (hmu_t*) ((char*) last_tp + size);
if (hmu_is_in_heap(heap, next))
hmu_mark_pinuse(next);
}
#if GC_STAT_DATA != 0
heap->total_free_size -= size;
if ((heap->current_size - heap->total_free_size) > heap->highmark_size)
heap->highmark_size = heap->current_size - heap->total_free_size;
#endif
hmu_set_size((hmu_t* ) last_tp, size);
return (hmu_t*) last_tp;
}
return NULL;
}
/* Find a proper HMU for given size*/
/* @heap should not be NULL and it should be a valid heap*/
/* @size should cover the header and it should be 8 bytes aligned*/
/* This function will try several ways to satisfy the allocation request.*/
/* 1. Find a proper on available HMUs.*/
/* 2. GC will be triggered if 1 failed.*/
/* 3. Find a proper on available HMUS.*/
/* 4. Return NULL if 3 failed*/
/* A proper HMU will be returned. This HMU can include the header and given size. The returned HMU will be aligned to 8 bytes.*/
/* NULL will be returned if there are no proper HMU.*/
BH_STATIC hmu_t* alloc_hmu_ex(gc_heap_t *heap, gc_size_t size)
{
hmu_t *ret = NULL;
bh_assert(gci_is_heap_valid(heap));
bh_assert(size > 0 && !(size & 7));
#ifdef GC_IN_EVERY_ALLOCATION
gci_gc_heap(heap);
ret = alloc_hmu(heap, size);
#else
# if GC_STAT_DATA != 0
if (heap->gc_threshold < heap->total_free_size)
ret = alloc_hmu(heap, size);
# else
ret = alloc_hmu(heap, size);
# endif
if (ret)
return ret;
/*gci_gc_heap(heap);*//* disable gc claim currently */
ret = alloc_hmu(heap, size);
#endif
return ret;
}
unsigned long g_total_malloc = 0;
unsigned long g_total_free = 0;
gc_object_t _gc_alloc_vo_i_heap(void *vheap,
gc_size_t size ALLOC_EXTRA_PARAMETERS)
{
gc_heap_t* heap = (gc_heap_t*) vheap;
hmu_t *hmu = NULL;
gc_object_t ret = (gc_object_t) NULL;
gc_size_t tot_size = 0;
/* align size*/
tot_size = GC_ALIGN_8(size + HMU_SIZE + OBJ_PREFIX_SIZE + OBJ_SUFFIX_SIZE); /* hmu header, prefix, suffix*/
if (tot_size < size)
return NULL;
gct_vm_mutex_lock(&heap->lock);
hmu = alloc_hmu_ex(heap, tot_size);
if (!hmu)
goto FINISH;
g_total_malloc += tot_size;
hmu_set_ut(hmu, HMU_VO);
hmu_unfree_vo(hmu);
#if defined(GC_VERIFY)
hmu_init_prefix_and_suffix(hmu, tot_size, file_name, line_number);
#endif
ret = hmu_to_obj(hmu);
#if BH_ENABLE_MEMORY_PROFILING != 0
printf("HEAP.ALLOC: heap: %p, size: %u", heap, size);
#endif
FINISH:
gct_vm_mutex_unlock(&heap->lock);
return ret;
}
/* see ems_gc.h for description*/
gc_object_t _gc_alloc_jo_i_heap(void *vheap,
gc_size_t size ALLOC_EXTRA_PARAMETERS)
{
gc_heap_t* heap = (gc_heap_t*) vheap;
gc_object_t ret = (gc_object_t) NULL;
hmu_t *hmu = NULL;
gc_size_t tot_size = 0;
bh_assert(gci_is_heap_valid(heap));
/* align size*/
tot_size = GC_ALIGN_8(size + HMU_SIZE + OBJ_PREFIX_SIZE + OBJ_SUFFIX_SIZE); /* hmu header, prefix, suffix*/
if (tot_size < size)
return NULL;
hmu = alloc_hmu_ex(heap, tot_size);
if (!hmu)
goto FINISH;
/* reset all fields*/
memset((char*) hmu + sizeof(*hmu), 0, tot_size - sizeof(*hmu));
/* hmu->header = 0; */
hmu_set_ut(hmu, HMU_JO);
hmu_unmark_jo(hmu);
#if defined(GC_VERIFY)
hmu_init_prefix_and_suffix(hmu, tot_size, file_name, line_number);
#endif
ret = hmu_to_obj(hmu);
#if BH_ENABLE_MEMORY_PROFILING != 0
printf("HEAP.ALLOC: heap: %p, size: %u", heap, size);
#endif
FINISH:
return ret;
}
/* Do some checking to see if given pointer is a possible valid heap*/
/* Return GC_TRUE if all checking passed*/
/* Return GC_FALSE otherwise*/
int gci_is_heap_valid(gc_heap_t *heap)
{
if (!heap)
return GC_FALSE;
if (heap->heap_id != (gc_handle_t) heap)
return GC_FALSE;
return GC_TRUE;
}
int gc_free_i_heap(void *vheap, gc_object_t obj ALLOC_EXTRA_PARAMETERS)
{
gc_heap_t* heap = (gc_heap_t*) vheap;
hmu_t *hmu = NULL;
hmu_t *prev = NULL;
hmu_t *next = NULL;
gc_size_t size = 0;
hmu_type_t ut;
int ret = GC_SUCCESS;
if (!obj) {
return GC_SUCCESS;
}
hmu = obj_to_hmu(obj);
gct_vm_mutex_lock(&heap->lock);
if ((gc_uint8 *) hmu >= heap->base_addr
&& (gc_uint8 *) hmu < heap->base_addr + heap->current_size) {
#ifdef GC_VERIFY
hmu_verify(hmu);
#endif
ut = hmu_get_ut(hmu);
if (ut == HMU_VO) {
if (hmu_is_vo_freed(hmu)) {
bh_assert(0);
ret = GC_ERROR;
goto out;
}
size = hmu_get_size(hmu);
g_total_free += size;
#if GC_STAT_DATA != 0
heap->total_free_size += size;
#endif
#if BH_ENABLE_MEMORY_PROFILING != 0
printf("HEAP.FREE, heap: %p, size: %u\n",heap, size);
#endif
if (!hmu_get_pinuse(hmu)) {
prev = (hmu_t*) ((char*) hmu - *((int*) hmu - 1));
if (hmu_is_in_heap(heap, prev) && hmu_get_ut(prev) == HMU_FC) {
size += hmu_get_size(prev);
hmu = prev;
unlink_hmu(heap, prev);
}
}
next = (hmu_t*) ((char*) hmu + size);
if (hmu_is_in_heap(heap, next)) {
if (hmu_get_ut(next) == HMU_FC) {
size += hmu_get_size(next);
unlink_hmu(heap, next);
next = (hmu_t*) ((char*) hmu + size);
}
}
gci_add_fc(heap, hmu, size);
if (hmu_is_in_heap(heap, next)) {
hmu_unmark_pinuse(next);
}
} else {
ret = GC_ERROR;
goto out;
}
ret = GC_SUCCESS;
goto out;
}
out:
gct_vm_mutex_unlock(&heap->lock);
return ret;
}
void gc_dump_heap_stats(gc_heap_t *heap)
{
printf("heap: %p, heap start: %p\n", heap, heap->base_addr);
printf(
"total malloc: totalfree: %u, current: %u, highmark: %u, gc cnt: %u\n",
heap->total_free_size, heap->current_size, heap->highmark_size,
heap->total_gc_count);
printf("g_total_malloc=%lu, g_total_free=%lu, occupied=%lu\n",
g_total_malloc, g_total_free, g_total_malloc - g_total_free);
}
#ifdef GC_TEST
void gci_dump(char* buf, gc_heap_t *heap)
{
hmu_t *cur = NULL, *end = NULL;
hmu_type_t ut;
gc_size_t size;
int i = 0;
int p;
char inuse;
int mark;
cur = (hmu_t*)heap->base_addr;
end = (hmu_t*)((char*)heap->base_addr + heap->current_size);
while(cur < end)
{
ut = hmu_get_ut(cur);
size = hmu_get_size(cur);
p = hmu_get_pinuse(cur);
mark = hmu_is_jo_marked (cur);
if(ut == HMU_VO)
inuse = 'V';
else if(ut == HMU_JO)
inuse = hmu_is_jo_marked(cur) ? 'J' : 'j';
else if(ut == HMU_FC)
inuse = 'F';
bh_assert(size > 0);
buf += sprintf(buf, "#%d %08x %x %x %d %c %d\n", i, (char*) cur - (char*) heap->base_addr, ut, p, mark, inuse, hmu_obj_size(size));
cur = (hmu_t*)((char *)cur + size);
i++;
}
bh_assert(cur == end);
}
#endif