This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/iwasm/interpreter/wasm_loader.c

3471 lines
121 KiB
C

/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasm_loader.h"
#include "bh_common.h"
#include "bh_memory.h"
#include "bh_log.h"
#include "wasm.h"
#include "wasm_opcode.h"
#include "wasm_runtime.h"
#include "../common/wasm_native.h"
/* Read a value of given type from the address pointed to by the given
pointer and increase the pointer to the position just after the
value being read. */
#define TEMPLATE_READ_VALUE(Type, p) \
(p += sizeof(Type), *(Type *)(p - sizeof(Type)))
static void
set_error_buf(char *error_buf, uint32 error_buf_size, const char *string)
{
if (error_buf != NULL)
snprintf(error_buf, error_buf_size, "%s", string);
}
#define CHECK_BUF(buf, buf_end, length) do { \
if (buf + length > buf_end) { \
set_error_buf(error_buf, error_buf_size, \
"WASM module load failed: " \
"unexpected end of section or function"); \
return false; \
} \
} while (0)
#define CHECK_BUF1(buf, buf_end, length) do { \
if (buf + length > buf_end) { \
set_error_buf(error_buf, error_buf_size, \
"WASM module load failed: unexpected end");\
return false; \
} \
} while (0)
static bool
skip_leb(const uint8 *buf, const uint8 *buf_end,
uint32 *p_offset, uint32 maxbits,
char* error_buf, uint32 error_buf_size)
{
uint32 bcnt = 0;
uint64 byte;
while (true) {
if (bcnt + 1 > (maxbits + 6) / 7) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"integer representation too long");
return false;
}
CHECK_BUF(buf, buf_end, *p_offset + 1);
byte = buf[*p_offset];
*p_offset += 1;
bcnt += 1;
if ((byte & 0x80) == 0) {
break;
}
}
return true;
}
#define skip_leb_int64(p, p_end) do { \
uint32 off = 0; \
if (!skip_leb(p, p_end, &off, 64, \
error_buf, error_buf_size)) \
return false; \
p += off; \
} while (0)
#define skip_leb_uint32(p, p_end) do { \
uint32 off = 0; \
if (!skip_leb(p, p_end, &off, 32, \
error_buf, error_buf_size)) \
return false; \
p += off; \
} while (0)
#define skip_leb_int32(p, p_end) do { \
uint32 off = 0; \
if (!skip_leb(p, p_end, &off, 32, \
error_buf, error_buf_size)) \
return false; \
p += off; \
} while (0)
static bool
read_leb(const uint8 *buf, const uint8 *buf_end,
uint32 *p_offset, uint32 maxbits,
bool sign, uint64 *p_result,
char* error_buf, uint32 error_buf_size)
{
uint64 result = 0;
uint32 shift = 0;
uint32 bcnt = 0;
uint64 byte;
while (true) {
if (bcnt + 1 > (maxbits + 6) / 7) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"integer representation too long");
return false;
}
CHECK_BUF(buf, buf_end, *p_offset + 1);
byte = buf[*p_offset];
*p_offset += 1;
result |= ((byte & 0x7f) << shift);
shift += 7;
bcnt += 1;
if ((byte & 0x80) == 0) {
break;
}
}
if (!sign && maxbits == 32 && shift >= maxbits) {
/* The top bits set represent values > 32 bits */
if (((uint8)byte) & 0xf0)
goto fail_integer_too_large;
}
else if (sign && maxbits == 32) {
if (shift < maxbits) {
/* Sign extend */
result = (((int32)result) << (maxbits - shift))
>> (maxbits - shift);
}
else {
/* The top bits should be a sign-extension of the sign bit */
bool sign_bit_set = ((uint8)byte) & 0x8;
int top_bits = ((uint8)byte) & 0xf0;
if ((sign_bit_set && top_bits != 0x70)
|| (!sign_bit_set && top_bits != 0))
goto fail_integer_too_large;
}
}
else if (sign && maxbits == 64) {
if (shift < maxbits) {
/* Sign extend */
result = (((int64)result) << (maxbits - shift))
>> (maxbits - shift);
}
else {
/* The top bits should be a sign-extension of the sign bit */
bool sign_bit_set = ((uint8)byte) & 0x1;
int top_bits = ((uint8)byte) & 0xfe;
if ((sign_bit_set && top_bits != 0x7e)
|| (!sign_bit_set && top_bits != 0))
goto fail_integer_too_large;
}
}
*p_result = result;
return true;
fail_integer_too_large:
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: integer too large");
return false;
}
#define read_uint8(p) TEMPLATE_READ_VALUE(uint8, p)
#define read_uint32(p) TEMPLATE_READ_VALUE(uint32, p)
#define read_bool(p) TEMPLATE_READ_VALUE(bool, p)
#define read_leb_int64(p, p_end, res) do { \
if (p < p_end) { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = (int64)_val; \
if (_val & 0x40) \
/* sign extend */ \
res |= 0xFFFFFFFFFFFFFF80LL; \
p++; \
break; \
} \
} \
uint32 off = 0; \
uint64 res64; \
if (!read_leb(p, p_end, &off, 64, true, &res64, \
error_buf, error_buf_size)) \
return false; \
p += off; \
res = (int64)res64; \
} while (0)
#define read_leb_uint32(p, p_end, res) do { \
if (p < p_end) { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = _val; \
p++; \
break; \
} \
} \
uint32 off = 0; \
uint64 res64; \
if (!read_leb(p, p_end, &off, 32, false, &res64, \
error_buf, error_buf_size)) \
return false; \
p += off; \
res = (uint32)res64; \
} while (0)
#define read_leb_int32(p, p_end, res) do { \
if (p < p_end) { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = (int32)_val; \
if (_val & 0x40) \
/* sign extend */ \
res |= 0xFFFFFF80; \
p++; \
break; \
} \
} \
uint32 off = 0; \
uint64 res64; \
if (!read_leb(p, p_end, &off, 32, true, &res64, \
error_buf, error_buf_size)) \
return false; \
p += off; \
res = (int32)res64; \
} while (0)
static bool
check_utf8_str(const uint8* str, uint32 len)
{
const uint8 *p = str, *p_end = str + len, *p_end1;
uint8 chr, n_bytes;
while (p < p_end) {
chr = *p++;
if (chr >= 0x80) {
/* Calculate the byte count: the first byte must be
110XXXXX, 1110XXXX, 11110XXX, 111110XX, or 1111110X,
the count of leading '1' denotes the total byte count */
n_bytes = 0;
while ((chr & 0x80) != 0) {
chr = (uint8)(chr << 1);
n_bytes++;
}
/* Check byte count */
if (n_bytes < 2 || n_bytes > 6
|| p + n_bytes - 1 > p_end)
return false;
/* Check the following bytes, which must be 10XXXXXX */
p_end1 = p + n_bytes - 1;
while (p < p_end1) {
if (!(*p & 0x80) || (*p | 0x40))
return false;
p++;
}
}
}
return true;
}
static char*
const_str_set_insert(const uint8 *str, uint32 len, WASMModule *module,
char* error_buf, uint32 error_buf_size)
{
HashMap *set = module->const_str_set;
char *c_str, *value;
if (!check_utf8_str(str, len)) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"invalid UTF-8 encoding");
return NULL;
}
if (!(c_str = wasm_malloc(len + 1))) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"allocate memory failed.");
return NULL;
}
bh_memcpy_s(c_str, len + 1, str, len);
c_str[len] = '\0';
if ((value = bh_hash_map_find(set, c_str))) {
wasm_free(c_str);
return value;
}
if (!bh_hash_map_insert(set, c_str, c_str)) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"insert string to hash map failed.");
wasm_free(c_str);
return NULL;
}
return c_str;
}
static bool
load_init_expr(const uint8 **p_buf, const uint8 *buf_end,
InitializerExpression *init_expr,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = *p_buf, *p_end = buf_end;
uint8 flag, end_byte, *p_float;
uint32 i;
CHECK_BUF(p, p_end, 1);
init_expr->init_expr_type = read_uint8(p);
flag = init_expr->init_expr_type;
switch (flag) {
/* i32.const */
case INIT_EXPR_TYPE_I32_CONST:
read_leb_int32(p, p_end, init_expr->u.i32);
break;
/* i64.const */
case INIT_EXPR_TYPE_I64_CONST:
read_leb_int64(p, p_end, init_expr->u.i64);
break;
/* f32.const */
case INIT_EXPR_TYPE_F32_CONST:
CHECK_BUF(p, p_end, 4);
p_float = (uint8*)&init_expr->u.f32;
for (i = 0; i < sizeof(float32); i++)
*p_float++ = *p++;
break;
/* f64.const */
case INIT_EXPR_TYPE_F64_CONST:
CHECK_BUF(p, p_end, 8);
p_float = (uint8*)&init_expr->u.f64;
for (i = 0; i < sizeof(float64); i++)
*p_float++ = *p++;
break;
/* get_global */
case INIT_EXPR_TYPE_GET_GLOBAL:
read_leb_uint32(p, p_end, init_expr->u.global_index);
break;
default:
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: type mismatch");
return false;
}
CHECK_BUF(p, p_end, 1);
end_byte = read_uint8(p);
if (end_byte != 0x0b) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"unexpected end of section or function");
return false;
}
*p_buf = p;
return true;
}
static bool
load_type_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end, *p_org;
uint32 type_count, param_count, result_count, i, j;
uint64 total_size;
uint8 flag;
WASMType *type;
read_leb_uint32(p, p_end, type_count);
if (type_count) {
module->type_count = type_count;
total_size = sizeof(WASMType*) * (uint64)type_count;
if (total_size >= UINT32_MAX
|| !(module->types = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load type section failed: allocate memory failed.");
return false;
}
memset(module->types, 0, (uint32)total_size);
for (i = 0; i < type_count; i++) {
CHECK_BUF(p, p_end, 1);
flag = read_uint8(p);
if (flag != 0x60) {
set_error_buf(error_buf, error_buf_size,
"Load type section failed: invalid type flag.");
return false;
}
read_leb_uint32(p, p_end, param_count);
/* Resolve param count and result count firstly */
p_org = p;
CHECK_BUF(p, p_end, param_count);
p += param_count;
read_leb_uint32(p, p_end, result_count);
if (result_count > 1) {
set_error_buf(error_buf, error_buf_size,
"Load type section failed: invalid result count.");
return false;
}
CHECK_BUF(p, p_end, result_count);
p = p_org;
total_size = offsetof(WASMType, types) +
sizeof(uint8) * (uint64)(param_count + result_count);
if (total_size >= UINT32_MAX
|| !(type = module->types[i] = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load type section failed: allocate memory failed.");
return false;
}
/* Resolve param types and result types */
type->param_count = param_count;
type->result_count = result_count;
for (j = 0; j < param_count; j++) {
CHECK_BUF(p, p_end, 1);
type->types[j] = read_uint8(p);
}
read_leb_uint32(p, p_end, result_count);
for (j = 0; j < result_count; j++) {
CHECK_BUF(p, p_end, 1);
type->types[param_count + j] = read_uint8(p);
}
}
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load type section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load type section success.\n");
return true;
}
static bool
load_table_import(const uint8 **p_buf, const uint8 *buf_end,
WASMTableImport *table,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = *p_buf, *p_end = buf_end;
CHECK_BUF(p, p_end, 1);
/* 0x70 */
table->elem_type = read_uint8(p);
bh_assert(table->elem_type == TABLE_ELEM_TYPE_ANY_FUNC);
read_leb_uint32(p, p_end, table->flags);
read_leb_uint32(p, p_end, table->init_size);
if (table->flags & 1)
read_leb_uint32(p, p_end, table->max_size);
else
table->max_size = 0x10000;
*p_buf = p;
return true;
}
static bool
load_memory_import(const uint8 **p_buf, const uint8 *buf_end,
WASMMemoryImport *memory,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = *p_buf, *p_end = buf_end;
uint32 pool_size = bh_memory_pool_size();
uint32 max_page_count = pool_size * APP_MEMORY_MAX_GLOBAL_HEAP_PERCENT
/ DEFAULT_NUM_BYTES_PER_PAGE;
read_leb_uint32(p, p_end, memory->flags);
read_leb_uint32(p, p_end, memory->init_page_count);
if (memory->flags & 1) {
read_leb_uint32(p, p_end, memory->max_page_count);
if (memory->max_page_count > max_page_count)
memory->max_page_count = max_page_count;
}
else
/* Limit the maximum memory size to max_page_count */
memory->max_page_count = max_page_count;
memory->num_bytes_per_page = DEFAULT_NUM_BYTES_PER_PAGE;
*p_buf = p;
return true;
}
static bool
load_table(const uint8 **p_buf, const uint8 *buf_end, WASMTable *table,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = *p_buf, *p_end = buf_end;
CHECK_BUF(p, p_end, 1);
/* 0x70 */
table->elem_type = read_uint8(p);
bh_assert(table->elem_type == TABLE_ELEM_TYPE_ANY_FUNC);
read_leb_uint32(p, p_end, table->flags);
read_leb_uint32(p, p_end, table->init_size);
if (table->flags & 1)
read_leb_uint32(p, p_end, table->max_size);
else
table->max_size = 0x10000;
*p_buf = p;
return true;
}
static bool
load_memory(const uint8 **p_buf, const uint8 *buf_end, WASMMemory *memory,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = *p_buf, *p_end = buf_end;
uint32 pool_size = bh_memory_pool_size();
uint32 max_page_count = pool_size * APP_MEMORY_MAX_GLOBAL_HEAP_PERCENT
/ DEFAULT_NUM_BYTES_PER_PAGE;
read_leb_uint32(p, p_end, memory->flags);
read_leb_uint32(p, p_end, memory->init_page_count);
if (memory->flags & 1) {
read_leb_uint32(p, p_end, memory->max_page_count);
if (memory->max_page_count > max_page_count)
memory->max_page_count = max_page_count;
}
else
/* Limit the maximum memory size to max_page_count */
memory->max_page_count = max_page_count;
memory->num_bytes_per_page = DEFAULT_NUM_BYTES_PER_PAGE;
*p_buf = p;
return true;
}
static void*
resolve_sym(const char *module_name, const char *field_name)
{
void *sym;
#if WASM_ENABLE_LIBC_BUILTIN != 0
if ((sym = wasm_native_lookup_libc_builtin_func(module_name,
field_name)))
return sym;
#endif
#if WASM_ENABLE_LIBC_WASI != 0
if ((sym = wasm_native_lookup_libc_wasi_func(module_name,
field_name)))
return sym;
#endif
#if WASM_ENABLE_BASE_LIB != 0
if ((sym = wasm_native_lookup_base_lib_func(module_name,
field_name)))
return sym;
#endif
if ((sym = wasm_native_lookup_extension_lib_func(module_name,
field_name)))
return sym;
return NULL;
}
static bool
load_import_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end, *p_old;
uint32 import_count, name_len, type_index, i, u32, flags;
uint64 total_size;
WASMImport *import;
WASMImport *import_functions = NULL, *import_tables = NULL;
WASMImport *import_memories = NULL, *import_globals = NULL;
char *module_name, *field_name;
uint8 mutable, u8, kind;
read_leb_uint32(p, p_end, import_count);
if (import_count) {
module->import_count = import_count;
total_size = sizeof(WASMImport) * (uint64)import_count;
if (total_size >= UINT32_MAX
|| !(module->imports = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: allocate memory failed.");
return false;
}
memset(module->imports, 0, (uint32)total_size);
p_old = p;
/* Scan firstly to get import count of each type */
for (i = 0; i < import_count; i++) {
/* module name */
read_leb_uint32(p, p_end, name_len);
CHECK_BUF(p, p_end, name_len);
p += name_len;
/* field name */
read_leb_uint32(p, p_end, name_len);
CHECK_BUF(p, p_end, name_len);
p += name_len;
CHECK_BUF(p, p_end, 1);
/* 0x00/0x01/0x02/0x03 */
kind = read_uint8(p);
switch (kind) {
case IMPORT_KIND_FUNC: /* import function */
read_leb_uint32(p, p_end, type_index);
module->import_function_count++;
break;
case IMPORT_KIND_TABLE: /* import table */
CHECK_BUF(p, p_end, 1);
/* 0x70 */
u8 = read_uint8(p);
read_leb_uint32(p, p_end, flags);
read_leb_uint32(p, p_end, u32);
if (flags & 1)
read_leb_uint32(p, p_end, u32);
module->import_table_count++;
if (module->import_table_count > 1) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: multiple tables");
return false;
}
break;
case IMPORT_KIND_MEMORY: /* import memory */
read_leb_uint32(p, p_end, flags);
read_leb_uint32(p, p_end, u32);
if (flags & 1)
read_leb_uint32(p, p_end, u32);
module->import_memory_count++;
if (module->import_memory_count > 1) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: multiple memories");
return false;
}
break;
case IMPORT_KIND_GLOBAL: /* import global */
CHECK_BUF(p, p_end, 2);
p += 2;
module->import_global_count++;
break;
default:
set_error_buf(error_buf, error_buf_size,
"Load import section failed: invalid import type.");
return false;
}
}
if (module->import_function_count)
import_functions = module->import_functions = module->imports;
if (module->import_table_count)
import_tables = module->import_tables =
module->imports + module->import_function_count;
if (module->import_memory_count)
import_memories = module->import_memories =
module->imports + module->import_function_count + module->import_table_count;
if (module->import_global_count)
import_globals = module->import_globals =
module->imports + module->import_function_count + module->import_table_count
+ module->import_memory_count;
p = p_old;
/* Scan again to read the data */
for (i = 0; i < import_count; i++) {
/* load module name */
read_leb_uint32(p, p_end, name_len);
CHECK_BUF(p, p_end, name_len);
if (!(module_name = const_str_set_insert
(p, name_len, module, error_buf, error_buf_size))) {
return false;
}
p += name_len;
/* load field name */
read_leb_uint32(p, p_end, name_len);
CHECK_BUF(p, p_end, name_len);
if (!(field_name = const_str_set_insert
(p, name_len, module, error_buf, error_buf_size))) {
return false;
}
p += name_len;
CHECK_BUF(p, p_end, 1);
/* 0x00/0x01/0x02/0x03 */
kind = read_uint8(p);
switch (kind) {
case IMPORT_KIND_FUNC: /* import function */
bh_assert(import_functions);
import = import_functions++;
read_leb_uint32(p, p_end, type_index);
if (type_index >= module->type_count) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: "
"function type index out of range.");
return false;
}
import->u.function.func_type = module->types[type_index];
if (!module->possible_memory_grow
&& !strcmp(module_name, "env")
&& !(strcmp(field_name, "enlargeMemory")))
module->possible_memory_grow = true;
if (!(import->u.function.func_ptr_linked =
resolve_sym(module_name, field_name))) {
#ifndef BUILD_AOT_COMPILER /* Output warning except running aot compiler */
LOG_WARNING("warning: fail to link import function (%s, %s)\n",
module_name, field_name);
#endif
}
break;
case IMPORT_KIND_TABLE: /* import table */
bh_assert(import_tables);
import = import_tables++;
if (!load_table_import(&p, p_end, &import->u.table,
error_buf, error_buf_size))
return false;
if (module->import_table_count > 1) {
set_error_buf(error_buf, error_buf_size, "multiple tables");
return false;
}
break;
case IMPORT_KIND_MEMORY: /* import memory */
bh_assert(import_memories);
import = import_memories++;
if (!load_memory_import(&p, p_end, &import->u.memory,
error_buf, error_buf_size))
return false;
if (module->import_memory_count > 1) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: multiple memories");
return false;
}
break;
case IMPORT_KIND_GLOBAL: /* import global */
bh_assert(import_globals);
import = import_globals++;
CHECK_BUF(p, p_end, 2);
import->u.global.type = read_uint8(p);
mutable = read_uint8(p);
if (mutable >= 2) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: "
"invalid mutability");
return false;
}
import->u.global.is_mutable = mutable & 1 ? true : false;
#if WASM_ENABLE_LIBC_BUILTIN != 0
if (!(wasm_native_lookup_libc_builtin_global(
module_name, field_name,
&import->u.global))) {
if (error_buf != NULL)
snprintf(error_buf, error_buf_size,
"Load import section failed: "
"resolve import global (%s, %s) failed.",
module_name, field_name);
return false;
}
#endif
break;
default:
set_error_buf(error_buf, error_buf_size,
"Load import section failed: "
"invalid import type.");
return false;
}
import->kind = kind;
import->u.names.module_name = module_name;
import->u.names.field_name = field_name;
}
#if WASM_ENABLE_LIBC_WASI != 0
import = module->import_functions;
for (i = 0; i < module->import_function_count; i++, import++) {
if (!strcmp(import->u.names.module_name, "wasi_unstable")) {
module->is_wasi_module = true;
break;
}
}
#endif
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load import section success.\n");
(void)u8;
(void)u32;
return true;
}
static bool
load_function_section(const uint8 *buf, const uint8 *buf_end,
const uint8 *buf_code, const uint8 *buf_code_end,
WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
const uint8 *p_code = buf_code, *p_code_end, *p_code_save;
uint32 func_count;
uint64 total_size;
uint32 code_count = 0, code_size, type_index, i, j, k, local_type_index;
uint32 local_count, local_set_count, sub_local_count;
uint8 type;
WASMFunction *func;
read_leb_uint32(p, p_end, func_count);
if (buf_code)
read_leb_uint32(p_code, buf_code_end, code_count);
if (func_count != code_count) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"function and code section have inconsistent lengths");
return false;
}
if (func_count) {
module->function_count = func_count;
total_size = sizeof(WASMFunction*) * (uint64)func_count;
if (total_size >= UINT32_MAX
|| !(module->functions = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: allocate memory failed.");
return false;
}
memset(module->functions, 0, (uint32)total_size);
for (i = 0; i < func_count; i++) {
/* Resolve function type */
read_leb_uint32(p, p_end, type_index);
if (type_index >= module->type_count) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"function type index out of range.");
return false;
}
read_leb_uint32(p_code, buf_code_end, code_size);
if (code_size == 0
|| p_code + code_size > buf_code_end) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"invalid function code size.");
return false;
}
/* Resolve local set count */
p_code_end = p_code + code_size;
local_count = 0;
read_leb_uint32(p_code, buf_code_end, local_set_count);
p_code_save = p_code;
/* Calculate total local count */
for (j = 0; j < local_set_count; j++) {
read_leb_uint32(p_code, buf_code_end, sub_local_count);
if (sub_local_count > UINT32_MAX - local_count) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"too many locals");
return false;
}
CHECK_BUF(p_code, buf_code_end, 1);
/* 0x7F/0x7E/0x7D/0x7C */
type = read_uint8(p_code);
local_count += sub_local_count;
}
/* Alloc memory, layout: function structure + local types */
code_size = (uint32)(p_code_end - p_code);
total_size = sizeof(WASMFunction) + (uint64)local_count;
if (total_size >= UINT32_MAX
|| !(func = module->functions[i] = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"allocate memory failed.");
return false;
}
/* Set function type, local count, code size and code body */
memset(func, 0, (uint32)total_size);
func->func_type = module->types[type_index];
func->local_count = local_count;
if (local_count > 0)
func->local_types = (uint8*)func + sizeof(WASMFunction);
func->code_size = code_size;
func->code = (uint8*)p_code;
/* Load each local type */
p_code = p_code_save;
local_type_index = 0;
for (j = 0; j < local_set_count; j++) {
read_leb_uint32(p_code, buf_code_end, sub_local_count);
if (local_type_index + sub_local_count <= local_type_index
|| local_type_index + sub_local_count > local_count) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"invalid local count.");
return false;
}
CHECK_BUF(p_code, buf_code_end, 1);
/* 0x7F/0x7E/0x7D/0x7C */
type = read_uint8(p_code);
if (type < VALUE_TYPE_F64 || type > VALUE_TYPE_I32) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: "
"invalid local type.");
return false;
}
for (k = 0; k < sub_local_count; k++) {
func->local_types[local_type_index++] = type;
}
}
p_code = p_code_end;
}
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load function section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load function section success.\n");
return true;
}
static bool
load_table_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 table_count, i;
uint64 total_size;
WASMTable *table;
read_leb_uint32(p, p_end, table_count);
bh_assert(table_count == 1);
if (table_count) {
if (table_count > 1) {
set_error_buf(error_buf, error_buf_size,
"Load table section failed: multiple memories");
return false;
}
module->table_count = table_count;
total_size = sizeof(WASMTable) * (uint64)table_count;
if (total_size >= UINT32_MAX
|| !(module->tables = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load table section failed: allocate memory failed.");
return false;
}
memset(module->tables, 0, (uint32)total_size);
/* load each table */
table = module->tables;
for (i = 0; i < table_count; i++, table++)
if (!load_table(&p, p_end, table, error_buf, error_buf_size))
return false;
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load table section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load table section success.\n");
return true;
}
static bool
load_memory_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 memory_count, i;
uint64 total_size;
WASMMemory *memory;
read_leb_uint32(p, p_end, memory_count);
bh_assert(memory_count == 1);
if (memory_count) {
if (memory_count > 1) {
set_error_buf(error_buf, error_buf_size,
"Load memory section failed: multiple memories");
return false;
}
module->memory_count = memory_count;
total_size = sizeof(WASMMemory) * (uint64)memory_count;
if (total_size >= UINT32_MAX
|| !(module->memories = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load memory section failed: allocate memory failed.");
return false;
}
memset(module->memories, 0, (uint32)total_size);
/* load each memory */
memory = module->memories;
for (i = 0; i < memory_count; i++, memory++)
if (!load_memory(&p, p_end, memory, error_buf, error_buf_size))
return false;
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load memory section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load memory section success.\n");
return true;
}
static bool
load_global_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 global_count, i;
uint64 total_size;
WASMGlobal *global;
uint8 mutable;
read_leb_uint32(p, p_end, global_count);
if (global_count) {
module->global_count = global_count;
total_size = sizeof(WASMGlobal) * (uint64)global_count;
if (total_size >= UINT32_MAX
|| !(module->globals = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load global section failed: "
"allocate memory failed.");
return false;
}
memset(module->globals, 0, (uint32)total_size);
global = module->globals;
for(i = 0; i < global_count; i++, global++) {
CHECK_BUF(p, p_end, 2);
global->type = read_uint8(p);
mutable = read_uint8(p);
if (mutable >= 2) {
set_error_buf(error_buf, error_buf_size,
"Load import section failed: "
"invalid mutability");
return false;
}
global->is_mutable = mutable ? true : false;
/* initialize expression */
if (!load_init_expr(&p, p_end, &(global->init_expr), error_buf, error_buf_size))
return false;
}
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load global section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load global section success.\n");
return true;
}
static bool
load_export_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 export_count, i, index;
uint64 total_size;
uint32 str_len;
WASMExport *export;
read_leb_uint32(p, p_end, export_count);
if (export_count) {
module->export_count = export_count;
total_size = sizeof(WASMExport) * (uint64)export_count;
if (total_size >= UINT32_MAX
|| !(module->exports = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load export section failed: "
"allocate memory failed.");
return false;
}
memset(module->exports, 0, (uint32)total_size);
export = module->exports;
for (i = 0; i < export_count; i++, export++) {
read_leb_uint32(p, p_end, str_len);
CHECK_BUF(p, p_end, str_len);
if (!(export->name = const_str_set_insert(p, str_len, module,
error_buf, error_buf_size))) {
return false;
}
p += str_len;
CHECK_BUF(p, p_end, 1);
export->kind = read_uint8(p);
read_leb_uint32(p, p_end, index);
export->index = index;
switch(export->kind) {
/*function index*/
case EXPORT_KIND_FUNC:
if (index >= module->function_count + module->import_function_count) {
set_error_buf(error_buf, error_buf_size,
"Load export section failed: "
"function index out of range.");
return false;
}
break;
/*table index*/
case EXPORT_KIND_TABLE:
if (index >= module->table_count + module->import_table_count) {
set_error_buf(error_buf, error_buf_size,
"Load export section failed: "
"table index out of range.");
return false;
}
break;
/*memory index*/
case EXPORT_KIND_MEMORY:
if (index >= module->memory_count + module->import_memory_count) {
set_error_buf(error_buf, error_buf_size,
"Load export section failed: "
"memory index out of range.");
return false;
}
break;
/*global index*/
case EXPORT_KIND_GLOBAL:
if (index >= module->global_count + module->import_global_count) {
set_error_buf(error_buf, error_buf_size,
"Load export section failed: "
"global index out of range.");
return false;
}
break;
default:
set_error_buf(error_buf, error_buf_size,
"Load export section failed: "
"invalid export kind.");
return false;
}
}
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load export section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load export section success.\n");
return true;
}
static bool
load_table_segment_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 table_segment_count, i, j, table_index, function_count, function_index;
uint64 total_size;
WASMTableSeg *table_segment;
read_leb_uint32(p, p_end, table_segment_count);
if (table_segment_count) {
module->table_seg_count = table_segment_count;
total_size = sizeof(WASMTableSeg) * (uint64)table_segment_count;
if (total_size >= UINT32_MAX
|| !(module->table_segments = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load table segment section failed: "
"allocate memory failed.");
return false;
}
memset(module->table_segments, 0, (uint32)total_size);
table_segment = module->table_segments;
for (i = 0; i < table_segment_count; i++, table_segment++) {
if (p >= p_end) {
set_error_buf(error_buf, error_buf_size,
"Load table segment section failed: "
"invalid value type");
return false;
}
read_leb_uint32(p, p_end, table_index);
table_segment->table_index = table_index;
/* initialize expression */
if (!load_init_expr(&p, p_end, &(table_segment->base_offset),
error_buf, error_buf_size))
return false;
read_leb_uint32(p, p_end, function_count);
table_segment->function_count = function_count;
total_size = sizeof(uint32) * (uint64)function_count;
if (total_size >= UINT32_MAX
|| !(table_segment->func_indexes = (uint32 *)
wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load table segment section failed: "
"allocate memory failed.");
return false;
}
for (j = 0; j < function_count; j++) {
read_leb_uint32(p, p_end, function_index);
table_segment->func_indexes[j] = function_index;
}
}
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load table segment section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load table segment section success.\n");
return true;
}
static bool
load_data_segment_section(const uint8 *buf, const uint8 *buf_end,
WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 data_seg_count, i, mem_index, data_seg_len;
uint64 total_size;
WASMDataSeg *dataseg;
InitializerExpression init_expr;
read_leb_uint32(p, p_end, data_seg_count);
if (data_seg_count) {
module->data_seg_count = data_seg_count;
total_size = sizeof(WASMDataSeg*) * (uint64)data_seg_count;
if (total_size >= UINT32_MAX
|| !(module->data_segments = wasm_malloc((uint32)total_size))) {
set_error_buf(error_buf, error_buf_size,
"Load data segment section failed: "
"allocate memory failed.");
return false;
}
memset(module->data_segments, 0, (uint32)total_size);
for (i = 0; i < data_seg_count; i++) {
read_leb_uint32(p, p_end, mem_index);
if (!load_init_expr(&p, p_end, &init_expr, error_buf, error_buf_size))
return false;
read_leb_uint32(p, p_end, data_seg_len);
if (!(dataseg = module->data_segments[i] =
wasm_malloc((uint32)sizeof(WASMDataSeg)))) {
set_error_buf(error_buf, error_buf_size,
"Load data segment section failed: "
"allocate memory failed.");
return false;
}
bh_memcpy_s(&dataseg->base_offset, sizeof(InitializerExpression),
&init_expr, sizeof(InitializerExpression));
dataseg->memory_index = mem_index;
dataseg->data_length = data_seg_len;
CHECK_BUF(p, p_end, data_seg_len);
dataseg->data = (uint8*)p;
p += data_seg_len;
}
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load data segment section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load data segment section success.\n");
return true;
}
static bool
load_code_section(const uint8 *buf, const uint8 *buf_end,
const uint8 *buf_func,
const uint8 *buf_func_end,
WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
const uint8 *p_func = buf_func;
uint32 func_count = 0, code_count;
/* code has been loaded in function section, so pass it here, just check
* whether function and code section have inconsistent lengths */
read_leb_uint32(p, p_end, code_count);
if (buf_func)
read_leb_uint32(p_func, buf_func_end, func_count);
if (func_count != code_count) {
set_error_buf(error_buf, error_buf_size,
"Load code section failed: "
"function and code section have inconsistent lengths");
return false;
}
LOG_VERBOSE("Load code segment section success.\n");
return true;
}
static bool
load_start_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 start_function;
read_leb_uint32(p, p_end, start_function);
if (start_function) {
if (start_function >= module->function_count + module->import_function_count) {
set_error_buf(error_buf, error_buf_size,
"Load start section failed: "
"function index out of range.");
return false;
}
module->start_function = start_function;
}
if (p != p_end) {
set_error_buf(error_buf, error_buf_size,
"Load start section failed: section size mismatch");
return false;
}
LOG_VERBOSE("Load start section success.\n");
return true;
}
static bool
load_user_section(const uint8 *buf, const uint8 *buf_end, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *p = buf, *p_end = buf_end;
uint32 name_len;
if (p >= p_end) {
set_error_buf(error_buf, error_buf_size,
"Load custom section failed: unexpected end");
return false;
}
read_leb_uint32(p, p_end, name_len);
if (name_len == 0
|| p + name_len > p_end) {
set_error_buf(error_buf, error_buf_size,
"Load custom section failed: unexpected end");
return false;
}
if (!check_utf8_str(p, name_len)) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"invalid UTF-8 encoding");
return false;
}
LOG_VERBOSE("Load custom section success.\n");
return true;
}
static bool
wasm_loader_prepare_bytecode(WASMModule *module, WASMFunction *func,
char *error_buf, uint32 error_buf_size);
static bool
load_from_sections(WASMModule *module, WASMSection *sections,
char *error_buf, uint32 error_buf_size)
{
WASMExport *export;
WASMSection *section = sections;
const uint8 *buf, *buf_end, *buf_code = NULL, *buf_code_end = NULL,
*buf_func = NULL, *buf_func_end = NULL;
WASMGlobal *llvm_data_end_global = NULL, *llvm_heap_base_global = NULL;
WASMGlobal *llvm_stack_top_global = NULL, *global;
uint32 llvm_data_end = UINT32_MAX, llvm_heap_base = UINT32_MAX;
uint32 llvm_stack_top = UINT32_MAX, global_index, i;
uint32 data_end_global_index = UINT32_MAX;
uint32 heap_base_global_index = UINT32_MAX;
uint32 stack_top_global_index = UINT32_MAX;
/* Find code and function sections if have */
while (section) {
if (section->section_type == SECTION_TYPE_CODE) {
buf_code = section->section_body;
buf_code_end = buf_code + section->section_body_size;
}
else if (section->section_type == SECTION_TYPE_FUNC) {
buf_func = section->section_body;
buf_func_end = buf_func + section->section_body_size;
}
section = section->next;
}
section = sections;
while (section) {
buf = section->section_body;
buf_end = buf + section->section_body_size;
switch (section->section_type) {
case SECTION_TYPE_USER:
/* unsupported user section, ignore it. */
if (!load_user_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_TYPE:
if (!load_type_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_IMPORT:
if (!load_import_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_FUNC:
if (!load_function_section(buf, buf_end, buf_code, buf_code_end,
module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_TABLE:
if (!load_table_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_MEMORY:
if (!load_memory_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_GLOBAL:
if (!load_global_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_EXPORT:
if (!load_export_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_START:
if (!load_start_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_ELEM:
if (!load_table_segment_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_CODE:
if (!load_code_section(buf, buf_end, buf_func, buf_func_end,
module, error_buf, error_buf_size))
return false;
break;
case SECTION_TYPE_DATA:
if (!load_data_segment_section(buf, buf_end, module, error_buf, error_buf_size))
return false;
break;
default:
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: invalid section id");
return false;
}
section = section->next;
}
for (i = 0; i < module->function_count; i++) {
WASMFunction *func = module->functions[i];
if (!wasm_loader_prepare_bytecode(module, func, error_buf, error_buf_size))
return false;
}
/* Resolve llvm auxiliary data/stack/heap info and reset memory info */
if (!module->possible_memory_grow) {
export = module->exports;
for (i = 0; i < module->export_count; i++, export++) {
if (export->kind == EXPORT_KIND_GLOBAL) {
if (!strcmp(export->name, "__heap_base")) {
global_index = export->index - module->import_global_count;
global = module->globals + global_index;
if (global->type == VALUE_TYPE_I32
&& !global->is_mutable
&& global->init_expr.init_expr_type ==
INIT_EXPR_TYPE_I32_CONST) {
heap_base_global_index = global_index;
llvm_heap_base_global = global;
llvm_heap_base = global->init_expr.u.i32;
LOG_VERBOSE("found llvm __heap_base global, value: %d\n",
llvm_heap_base);
}
}
else if (!strcmp(export->name, "__data_end")) {
global_index = export->index - module->import_global_count;
global = module->globals + global_index;
if (global->type == VALUE_TYPE_I32
&& !global->is_mutable
&& global->init_expr.init_expr_type ==
INIT_EXPR_TYPE_I32_CONST) {
data_end_global_index = global_index;
llvm_data_end_global = global;
llvm_data_end = global->init_expr.u.i32;
LOG_VERBOSE("found llvm __data_end global, value: %d\n",
llvm_data_end);
llvm_data_end = align_uint(llvm_data_end, 16);
}
}
if (llvm_data_end_global && llvm_heap_base_global) {
if ((data_end_global_index == heap_base_global_index + 1
&& data_end_global_index > 0)
|| (heap_base_global_index == data_end_global_index + 1
&& heap_base_global_index > 0)) {
global_index =
data_end_global_index < heap_base_global_index
? data_end_global_index - 1 : heap_base_global_index - 1;
global = module->globals + global_index;
if (global->type == VALUE_TYPE_I32
&& global->is_mutable
&& global->init_expr.init_expr_type ==
INIT_EXPR_TYPE_I32_CONST) {
llvm_stack_top_global = global;
llvm_stack_top = global->init_expr.u.i32;
stack_top_global_index = global_index;
LOG_VERBOSE("found llvm stack top global, "
"value: %d, global index: %d\n",
llvm_stack_top, global_index);
}
}
break;
}
}
}
if (llvm_data_end_global
&& llvm_heap_base_global
&& llvm_stack_top_global
&& llvm_stack_top <= llvm_heap_base) {
WASMMemoryImport *memory_import;
WASMMemory *memory;
uint64 init_memory_size;
uint32 shrunk_memory_size = llvm_heap_base > llvm_data_end
? llvm_heap_base : llvm_data_end;
if (module->import_memory_count) {
memory_import = &module->import_memories[0].u.memory;
init_memory_size = (uint64)memory_import->num_bytes_per_page *
memory_import->init_page_count;
if (llvm_heap_base <= init_memory_size
&& llvm_data_end <= init_memory_size) {
/* Reset memory info to decrease memory usage */
memory_import->num_bytes_per_page = shrunk_memory_size;
memory_import->init_page_count = 1;
LOG_VERBOSE("reset import memory size to %d\n",
shrunk_memory_size);
}
}
if (module->memory_count) {
memory = &module->memories[0];
init_memory_size = (uint64)memory->num_bytes_per_page *
memory->init_page_count;
if (llvm_heap_base <= init_memory_size
&& llvm_data_end <= init_memory_size) {
/* Reset memory info to decrease memory usage */
memory->num_bytes_per_page = shrunk_memory_size;
memory->init_page_count = 1;
LOG_VERBOSE("reset memory size to %d\n", shrunk_memory_size);
}
}
module->llvm_aux_data_end = llvm_data_end;
module->llvm_aux_stack_bottom = llvm_stack_top;
module->llvm_aux_stack_size = llvm_stack_top > llvm_data_end
? llvm_stack_top - llvm_data_end
: llvm_stack_top;
module->llvm_aux_stack_global_index = stack_top_global_index;
LOG_VERBOSE("aux stack bottom: %d, size: %d\n",
module->llvm_aux_stack_bottom,
module->llvm_aux_stack_size);
}
}
return true;
}
#if BEIHAI_ENABLE_MEMORY_PROFILING != 0
static void wasm_loader_free(void *ptr)
{
wasm_free(ptr);
}
#else
#define wasm_loader_free wasm_free
#endif
static WASMModule*
create_module(char *error_buf, uint32 error_buf_size)
{
WASMModule *module = wasm_malloc(sizeof(WASMModule));
if (!module) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"allocate memory failed.");
return NULL;
}
memset(module, 0, sizeof(WASMModule));
module->module_type = Wasm_Module_Bytecode;
/* Set start_function to -1, means no start function */
module->start_function = (uint32)-1;
if (!(module->const_str_set = bh_hash_map_create(32, false,
(HashFunc)wasm_string_hash,
(KeyEqualFunc)wasm_string_equal,
NULL,
wasm_loader_free))) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"create const string set failed.");
goto fail;
}
return module;
fail:
wasm_loader_unload(module);
return NULL;
}
WASMModule *
wasm_loader_load_from_sections(WASMSection *section_list,
char *error_buf, uint32 error_buf_size)
{
WASMModule *module = create_module(error_buf, error_buf_size);
if (!module)
return NULL;
if (!load_from_sections(module, section_list, error_buf, error_buf_size)) {
wasm_loader_unload(module);
return NULL;
}
LOG_VERBOSE("Load module from sections success.\n");
return module;
}
static void
destroy_sections(WASMSection *section_list)
{
WASMSection *section = section_list, *next;
while (section) {
next = section->next;
wasm_free(section);
section = next;
}
}
static bool
create_sections(const uint8 *buf, uint32 size,
WASMSection **p_section_list,
char *error_buf, uint32 error_buf_size)
{
WASMSection *section_list_end = NULL, *section;
const uint8 *p = buf, *p_end = buf + size/*, *section_body*/;
uint8 section_type, last_section_type = (uint8)-1;
uint32 section_size;
bh_assert(!*p_section_list);
p += 8;
while (p < p_end) {
CHECK_BUF(p, p_end, 1);
section_type = read_uint8(p);
if (section_type <= SECTION_TYPE_DATA) {
if (section_type != SECTION_TYPE_USER) {
/* Custom sections may be inserted at any place,
while other sections must occur at most once
and in prescribed order. */
if (last_section_type != (uint8)-1
&& section_type <= last_section_type) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"junk after last section");
return false;
}
last_section_type = section_type;
}
CHECK_BUF1(p, p_end, 1);
read_leb_uint32(p, p_end, section_size);
CHECK_BUF1(p, p_end, section_size);
if (!(section = wasm_malloc(sizeof(WASMSection)))) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"allocate memory failed.");
return false;
}
memset(section, 0, sizeof(WASMSection));
section->section_type = section_type;
section->section_body = p;
section->section_body_size = section_size;
if (!*p_section_list)
*p_section_list = section_list_end = section;
else {
section_list_end->next = section;
section_list_end = section;
}
p += section_size;
}
else {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: invalid section id");
return false;
}
}
return true;
}
static void
exchange32(uint8* p_data)
{
uint8 value = *p_data;
*p_data = *(p_data + 3);
*(p_data + 3) = value;
value = *(p_data + 1);
*(p_data + 1) = *(p_data + 2);
*(p_data + 2) = value;
}
static union {
int a;
char b;
} __ue = { .a = 1 };
#define is_little_endian() (__ue.b == 1)
static bool
load(const uint8 *buf, uint32 size, WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
const uint8 *buf_end = buf + size;
const uint8 *p = buf, *p_end = buf_end;
uint32 magic_number, version;
WASMSection *section_list = NULL;
CHECK_BUF1(p, p_end, sizeof(uint32));
magic_number = read_uint32(p);
if (!is_little_endian())
exchange32((uint8*)&magic_number);
if (magic_number != WASM_MAGIC_NUMBER) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: magic header not detected");
return false;
}
CHECK_BUF1(p, p_end, sizeof(uint32));
version = read_uint32(p);
if (!is_little_endian())
exchange32((uint8*)&version);
if (version != WASM_CURRENT_VERSION) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: unknown binary version");
return false;
}
if (!create_sections(buf, size, &section_list, error_buf, error_buf_size)
|| !load_from_sections(module, section_list, error_buf, error_buf_size)) {
destroy_sections(section_list);
return false;
}
destroy_sections(section_list);
return true;
}
const uint8* wasm_file;
WASMModule*
wasm_loader_load(const uint8 *buf, uint32 size, char *error_buf, uint32 error_buf_size)
{
wasm_file = buf;
WASMModule *module = wasm_malloc(sizeof(WASMModule));
if (!module) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: allocate memory failed.");
return NULL;
}
memset(module, 0, sizeof(WASMModule));
module->module_type = Wasm_Module_Bytecode;
/* Set start_function to -1, means no start function */
module->start_function = (uint32)-1;
if (!(module->const_str_set =
bh_hash_map_create(32, false,
(HashFunc)wasm_string_hash,
(KeyEqualFunc)wasm_string_equal,
NULL,
wasm_loader_free)))
goto fail;
if (!load(buf, size, module, error_buf, error_buf_size))
goto fail;
LOG_VERBOSE("Load module success.\n");
return module;
fail:
wasm_loader_unload(module);
return NULL;
}
void
wasm_loader_unload(WASMModule *module)
{
uint32 i;
if (!module)
return;
if (module->types) {
for (i = 0; i < module->type_count; i++) {
if (module->types[i])
wasm_free(module->types[i]);
}
wasm_free(module->types);
}
if (module->imports)
wasm_free(module->imports);
if (module->functions) {
for (i = 0; i < module->function_count; i++) {
if (module->functions[i])
wasm_free(module->functions[i]);
}
wasm_free(module->functions);
}
if (module->tables)
wasm_free(module->tables);
if (module->memories)
wasm_free(module->memories);
if (module->globals)
wasm_free(module->globals);
if (module->exports)
wasm_free(module->exports);
if (module->table_segments) {
for (i = 0; i < module->table_seg_count; i++) {
if (module->table_segments[i].func_indexes)
wasm_free(module->table_segments[i].func_indexes);
}
wasm_free(module->table_segments);
}
if (module->data_segments) {
for (i = 0; i < module->data_seg_count; i++) {
if (module->data_segments[i])
wasm_free(module->data_segments[i]);
}
wasm_free(module->data_segments);
}
if (module->const_str_set)
bh_hash_map_destroy(module->const_str_set);
wasm_free(module);
}
bool
wasm_loader_find_block_addr(WASMModule *module,
const uint8 *start_addr,
const uint8 *code_end_addr,
uint8 block_type,
uint8 **p_else_addr,
uint8 **p_end_addr,
char *error_buf,
uint32 error_buf_size)
{
const uint8 *p = start_addr, *p_end = code_end_addr;
uint8 *else_addr = NULL;
uint32 block_nested_depth = 1, count, i;
uint8 opcode, u8;
BlockAddr block_stack[16] = { 0 }, *block;
uint32 j, t;
i = (uint32)(((uintptr_t)start_addr) ^ ((uintptr_t)start_addr >> 16));
i = i % BLOCK_ADDR_CACHE_SIZE;
block = module->block_addr_cache[i];
for (j = 0; j < BLOCK_ADDR_CONFLICT_SIZE; j++) {
if (block[j].start_addr == start_addr) {
/* Cache hit */
*p_else_addr = block[j].else_addr;
*p_end_addr = block[j].end_addr;
return true;
}
}
/* Cache unhit */
block_stack[0].start_addr = start_addr;
while (p < code_end_addr) {
opcode = *p++;
switch (opcode) {
case WASM_OP_UNREACHABLE:
case WASM_OP_NOP:
break;
case WASM_OP_BLOCK:
case WASM_OP_LOOP:
case WASM_OP_IF:
CHECK_BUF(p, p_end, 1);
/* block result type: 0x40/0x7F/0x7E/0x7D/0x7C */
u8 = read_uint8(p);
if (block_nested_depth < sizeof(block_stack)/sizeof(BlockAddr)) {
block_stack[block_nested_depth].start_addr = p;
block_stack[block_nested_depth].else_addr = NULL;
}
block_nested_depth++;
break;
case WASM_OP_ELSE:
if (block_type == BLOCK_TYPE_IF && block_nested_depth == 1)
else_addr = (uint8*)(p - 1);
if (block_nested_depth - 1 < sizeof(block_stack)/sizeof(BlockAddr))
block_stack[block_nested_depth - 1].else_addr = (uint8*)(p - 1);
break;
case WASM_OP_END:
if (block_nested_depth == 1) {
if (block_type == BLOCK_TYPE_IF)
*p_else_addr = else_addr;
*p_end_addr = (uint8*)(p - 1);
block_stack[0].end_addr = (uint8*)(p - 1);
for (t = 0; t < sizeof(block_stack)/sizeof(BlockAddr); t++) {
start_addr = block_stack[t].start_addr;
if (start_addr) {
i = (uint32)(((uintptr_t)start_addr) ^ ((uintptr_t)start_addr >> 16));
i = i % BLOCK_ADDR_CACHE_SIZE;
block = module->block_addr_cache[i];
for (j = 0; j < BLOCK_ADDR_CONFLICT_SIZE; j++)
if (!block[j].start_addr)
break;
if (j == BLOCK_ADDR_CONFLICT_SIZE) {
memmove(block + 1, block, (BLOCK_ADDR_CONFLICT_SIZE - 1) *
sizeof(BlockAddr));
j = 0;
}
block[j].start_addr = block_stack[t].start_addr;
block[j].else_addr = block_stack[t].else_addr;
block[j].end_addr = block_stack[t].end_addr;
}
else
break;
}
return true;
}
else {
block_nested_depth--;
if (block_nested_depth < sizeof(block_stack)/sizeof(BlockAddr))
block_stack[block_nested_depth].end_addr = (uint8*)(p - 1);
}
break;
case WASM_OP_BR:
case WASM_OP_BR_IF:
skip_leb_uint32(p, p_end); /* labelidx */
break;
case WASM_OP_BR_TABLE:
read_leb_uint32(p, p_end, count); /* lable num */
for (i = 0; i <= count; i++) /* lableidxs */
skip_leb_uint32(p, p_end);
break;
case WASM_OP_RETURN:
break;
case WASM_OP_CALL:
skip_leb_uint32(p, p_end); /* funcidx */
break;
case WASM_OP_CALL_INDIRECT:
skip_leb_uint32(p, p_end); /* typeidx */
CHECK_BUF(p, p_end, 1);
u8 = read_uint8(p); /* 0x00 */
break;
case WASM_OP_DROP:
case WASM_OP_SELECT:
case WASM_OP_DROP_32:
case WASM_OP_DROP_64:
case WASM_OP_SELECT_32:
case WASM_OP_SELECT_64:
break;
case WASM_OP_GET_LOCAL:
case WASM_OP_SET_LOCAL:
case WASM_OP_TEE_LOCAL:
case WASM_OP_GET_GLOBAL:
case WASM_OP_SET_GLOBAL:
skip_leb_uint32(p, p_end); /* localidx */
break;
case WASM_OP_GET_LOCAL_FAST:
case WASM_OP_SET_LOCAL_FAST:
case WASM_OP_TEE_LOCAL_FAST:
case WASM_OP_GET_GLOBAL_FAST:
case WASM_OP_SET_GLOBAL_FAST:
CHECK_BUF(p, p_end, 1);
p++;
break;
case WASM_OP_I32_LOAD:
case WASM_OP_I64_LOAD:
case WASM_OP_F32_LOAD:
case WASM_OP_F64_LOAD:
case WASM_OP_I32_LOAD8_S:
case WASM_OP_I32_LOAD8_U:
case WASM_OP_I32_LOAD16_S:
case WASM_OP_I32_LOAD16_U:
case WASM_OP_I64_LOAD8_S:
case WASM_OP_I64_LOAD8_U:
case WASM_OP_I64_LOAD16_S:
case WASM_OP_I64_LOAD16_U:
case WASM_OP_I64_LOAD32_S:
case WASM_OP_I64_LOAD32_U:
case WASM_OP_I32_STORE:
case WASM_OP_I64_STORE:
case WASM_OP_F32_STORE:
case WASM_OP_F64_STORE:
case WASM_OP_I32_STORE8:
case WASM_OP_I32_STORE16:
case WASM_OP_I64_STORE8:
case WASM_OP_I64_STORE16:
case WASM_OP_I64_STORE32:
skip_leb_uint32(p, p_end); /* align */
skip_leb_uint32(p, p_end); /* offset */
break;
case WASM_OP_MEMORY_SIZE:
case WASM_OP_MEMORY_GROW:
skip_leb_uint32(p, p_end); /* 0x00 */
break;
case WASM_OP_I32_CONST:
skip_leb_int32(p, p_end);
break;
case WASM_OP_I64_CONST:
skip_leb_int64(p, p_end);
break;
case WASM_OP_F32_CONST:
p += sizeof(float32);
break;
case WASM_OP_F64_CONST:
p += sizeof(float64);
break;
case WASM_OP_I32_EQZ:
case WASM_OP_I32_EQ:
case WASM_OP_I32_NE:
case WASM_OP_I32_LT_S:
case WASM_OP_I32_LT_U:
case WASM_OP_I32_GT_S:
case WASM_OP_I32_GT_U:
case WASM_OP_I32_LE_S:
case WASM_OP_I32_LE_U:
case WASM_OP_I32_GE_S:
case WASM_OP_I32_GE_U:
case WASM_OP_I64_EQZ:
case WASM_OP_I64_EQ:
case WASM_OP_I64_NE:
case WASM_OP_I64_LT_S:
case WASM_OP_I64_LT_U:
case WASM_OP_I64_GT_S:
case WASM_OP_I64_GT_U:
case WASM_OP_I64_LE_S:
case WASM_OP_I64_LE_U:
case WASM_OP_I64_GE_S:
case WASM_OP_I64_GE_U:
case WASM_OP_F32_EQ:
case WASM_OP_F32_NE:
case WASM_OP_F32_LT:
case WASM_OP_F32_GT:
case WASM_OP_F32_LE:
case WASM_OP_F32_GE:
case WASM_OP_F64_EQ:
case WASM_OP_F64_NE:
case WASM_OP_F64_LT:
case WASM_OP_F64_GT:
case WASM_OP_F64_LE:
case WASM_OP_F64_GE:
case WASM_OP_I32_CLZ:
case WASM_OP_I32_CTZ:
case WASM_OP_I32_POPCNT:
case WASM_OP_I32_ADD:
case WASM_OP_I32_SUB:
case WASM_OP_I32_MUL:
case WASM_OP_I32_DIV_S:
case WASM_OP_I32_DIV_U:
case WASM_OP_I32_REM_S:
case WASM_OP_I32_REM_U:
case WASM_OP_I32_AND:
case WASM_OP_I32_OR:
case WASM_OP_I32_XOR:
case WASM_OP_I32_SHL:
case WASM_OP_I32_SHR_S:
case WASM_OP_I32_SHR_U:
case WASM_OP_I32_ROTL:
case WASM_OP_I32_ROTR:
case WASM_OP_I64_CLZ:
case WASM_OP_I64_CTZ:
case WASM_OP_I64_POPCNT:
case WASM_OP_I64_ADD:
case WASM_OP_I64_SUB:
case WASM_OP_I64_MUL:
case WASM_OP_I64_DIV_S:
case WASM_OP_I64_DIV_U:
case WASM_OP_I64_REM_S:
case WASM_OP_I64_REM_U:
case WASM_OP_I64_AND:
case WASM_OP_I64_OR:
case WASM_OP_I64_XOR:
case WASM_OP_I64_SHL:
case WASM_OP_I64_SHR_S:
case WASM_OP_I64_SHR_U:
case WASM_OP_I64_ROTL:
case WASM_OP_I64_ROTR:
case WASM_OP_F32_ABS:
case WASM_OP_F32_NEG:
case WASM_OP_F32_CEIL:
case WASM_OP_F32_FLOOR:
case WASM_OP_F32_TRUNC:
case WASM_OP_F32_NEAREST:
case WASM_OP_F32_SQRT:
case WASM_OP_F32_ADD:
case WASM_OP_F32_SUB:
case WASM_OP_F32_MUL:
case WASM_OP_F32_DIV:
case WASM_OP_F32_MIN:
case WASM_OP_F32_MAX:
case WASM_OP_F32_COPYSIGN:
case WASM_OP_F64_ABS:
case WASM_OP_F64_NEG:
case WASM_OP_F64_CEIL:
case WASM_OP_F64_FLOOR:
case WASM_OP_F64_TRUNC:
case WASM_OP_F64_NEAREST:
case WASM_OP_F64_SQRT:
case WASM_OP_F64_ADD:
case WASM_OP_F64_SUB:
case WASM_OP_F64_MUL:
case WASM_OP_F64_DIV:
case WASM_OP_F64_MIN:
case WASM_OP_F64_MAX:
case WASM_OP_F64_COPYSIGN:
case WASM_OP_I32_WRAP_I64:
case WASM_OP_I32_TRUNC_S_F32:
case WASM_OP_I32_TRUNC_U_F32:
case WASM_OP_I32_TRUNC_S_F64:
case WASM_OP_I32_TRUNC_U_F64:
case WASM_OP_I64_EXTEND_S_I32:
case WASM_OP_I64_EXTEND_U_I32:
case WASM_OP_I64_TRUNC_S_F32:
case WASM_OP_I64_TRUNC_U_F32:
case WASM_OP_I64_TRUNC_S_F64:
case WASM_OP_I64_TRUNC_U_F64:
case WASM_OP_F32_CONVERT_S_I32:
case WASM_OP_F32_CONVERT_U_I32:
case WASM_OP_F32_CONVERT_S_I64:
case WASM_OP_F32_CONVERT_U_I64:
case WASM_OP_F32_DEMOTE_F64:
case WASM_OP_F64_CONVERT_S_I32:
case WASM_OP_F64_CONVERT_U_I32:
case WASM_OP_F64_CONVERT_S_I64:
case WASM_OP_F64_CONVERT_U_I64:
case WASM_OP_F64_PROMOTE_F32:
case WASM_OP_I32_REINTERPRET_F32:
case WASM_OP_I64_REINTERPRET_F64:
case WASM_OP_F32_REINTERPRET_I32:
case WASM_OP_F64_REINTERPRET_I64:
break;
default:
if (error_buf)
snprintf(error_buf, error_buf_size,
"WASM loader find block addr failed: "
"invalid opcode %02x.", opcode);
return false;
}
}
(void)u8;
return false;
}
#define REF_I32 VALUE_TYPE_I32
#define REF_F32 VALUE_TYPE_F32
#define REF_I64_1 VALUE_TYPE_I64
#define REF_I64_2 VALUE_TYPE_I64
#define REF_F64_1 VALUE_TYPE_F64
#define REF_F64_2 VALUE_TYPE_F64
typedef struct BranchBlock {
uint8 block_type;
uint8 return_type;
bool is_block_reachable;
uint8 *start_addr;
uint8 *else_addr;
uint8 *end_addr;
uint32 stack_cell_num;
} BranchBlock;
static void*
memory_realloc(void *mem_old, uint32 size_old, uint32 size_new)
{
uint8 *mem_new;
bh_assert(size_new > size_old);
if ((mem_new = wasm_malloc(size_new))) {
bh_memcpy_s(mem_new, size_new, mem_old, size_old);
memset(mem_new + size_old, 0, size_new - size_old);
wasm_free(mem_old);
}
return mem_new;
}
#define MEM_REALLOC(mem, size_old, size_new) do { \
void *mem_new = memory_realloc(mem, size_old, size_new);\
if (!mem_new) { \
set_error_buf(error_buf, error_buf_size, \
"WASM loader prepare bytecode failed: " \
"allocate memory failed."); \
goto fail; \
} \
mem = mem_new; \
} while (0)
static bool
check_stack_push(uint8 **p_frame_ref_bottom, uint8 **p_frame_ref_boundary,
uint8 **p_frame_ref, uint32 *p_frame_ref_size,
uint32 stack_cell_num,
char *error_buf, uint32 error_buf_size)
{
if (*p_frame_ref >= *p_frame_ref_boundary) {
MEM_REALLOC(*p_frame_ref_bottom, *p_frame_ref_size,
*p_frame_ref_size + 16);
*p_frame_ref_size += 16;
*p_frame_ref_boundary = *p_frame_ref_bottom + *p_frame_ref_size;
*p_frame_ref = *p_frame_ref_bottom + stack_cell_num;
}
return true;
fail:
return false;
}
#define CHECK_STACK_PUSH() do { \
if (!check_stack_push(&frame_ref_bottom, &frame_ref_boundary,\
&frame_ref, &frame_ref_size, \
stack_cell_num, \
error_buf, error_buf_size)) \
goto fail; \
} while (0)
static bool
check_stack_pop(uint8 type, uint8 *frame_ref, uint32 stack_cell_num,
char *error_buf, uint32 error_buf_size,
const char *type_str)
{
if (((type == VALUE_TYPE_I32 || type == VALUE_TYPE_F32)
&& stack_cell_num < 1)
|| ((type == VALUE_TYPE_I64 || type == VALUE_TYPE_F64)
&& stack_cell_num < 2)) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"type mismatch: expect data but stack was empty");
return false;
}
if ((type == VALUE_TYPE_I32 && *(frame_ref - 1) != REF_I32)
|| (type == VALUE_TYPE_F32 && *(frame_ref - 1) != REF_F32)
|| (type == VALUE_TYPE_I64
&& (*(frame_ref - 2) != REF_I64_1 || *(frame_ref - 1) != REF_I64_2))
|| (type == VALUE_TYPE_F64
&& (*(frame_ref - 2) != REF_F64_1 || *(frame_ref - 1) != REF_F64_2))) {
if (error_buf != NULL)
snprintf(error_buf, error_buf_size, "%s%s%s",
"WASM module load failed: type mismatch: expect ",
type_str, " but got other");
return false;
}
return true;
}
#define CHECK_STACK_POP(TYPE, type) do { \
if (!check_stack_pop(VALUE_TYPE_##TYPE, \
frame_ref, stack_cell_num, \
error_buf, error_buf_size, #type)) \
goto fail; \
} while (0)
#define PUSH_I32() do { \
CHECK_STACK_PUSH(); \
*frame_ref++ = REF_I32; \
stack_cell_num++; \
if (stack_cell_num > max_stack_cell_num) \
max_stack_cell_num = stack_cell_num; \
} while (0)
#define PUSH_F32() do { \
CHECK_STACK_PUSH(); \
*frame_ref++ = REF_F32; \
stack_cell_num++; \
if (stack_cell_num > max_stack_cell_num) \
max_stack_cell_num = stack_cell_num; \
} while (0)
#define PUSH_I64() do { \
CHECK_STACK_PUSH(); \
*frame_ref++ = REF_I64_1; \
stack_cell_num++; \
CHECK_STACK_PUSH(); \
*frame_ref++ = REF_I64_2; \
stack_cell_num++; \
if (stack_cell_num > max_stack_cell_num) \
max_stack_cell_num = stack_cell_num; \
} while (0)
#define PUSH_F64() do { \
CHECK_STACK_PUSH(); \
*frame_ref++ = REF_F64_1; \
stack_cell_num++; \
CHECK_STACK_PUSH(); \
*frame_ref++ = REF_F64_2; \
stack_cell_num++; \
if (stack_cell_num > max_stack_cell_num) \
max_stack_cell_num = stack_cell_num; \
} while (0)
#define POP_I32() do { \
CHECK_STACK_POP(I32, i32); \
stack_cell_num--; \
frame_ref--; \
} while (0)
#define POP_I64() do { \
CHECK_STACK_POP(I64, i64); \
stack_cell_num -= 2; \
frame_ref -= 2; \
} while (0)
#define POP_F32() do { \
CHECK_STACK_POP(F32, f32); \
stack_cell_num--; \
frame_ref--; \
} while (0)
#define POP_F64() do { \
CHECK_STACK_POP(F64, f64); \
stack_cell_num -= 2; \
frame_ref -= 2; \
} while (0)
static bool
push_type(uint8 type, uint8 **p_frame_ref_bottom,
uint8 **p_frame_ref_boundary,
uint8 **p_frame_ref, uint32 *p_frame_ref_size,
uint32 *p_stack_cell_num, uint32 *p_max_stack_cell_num,
char *error_buf, uint32 error_buf_size)
{
uint8 *frame_ref = *p_frame_ref;
uint32 frame_ref_size = *p_frame_ref_size;
uint32 max_stack_cell_num = *p_max_stack_cell_num;
uint32 stack_cell_num = *p_stack_cell_num;
switch (type) {
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
if (!check_stack_push(p_frame_ref_bottom, p_frame_ref_boundary,
&frame_ref, &frame_ref_size,
stack_cell_num,
error_buf, error_buf_size))
goto fail;
*frame_ref++ = type;
stack_cell_num++;
if (stack_cell_num > max_stack_cell_num)
max_stack_cell_num = stack_cell_num;
goto handle_i32_f32;
handle_i32_f32:
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
if (!check_stack_push(p_frame_ref_bottom, p_frame_ref_boundary,
&frame_ref, &frame_ref_size,
stack_cell_num,
error_buf, error_buf_size))
goto fail;
*frame_ref++ = type;
stack_cell_num++;
if (stack_cell_num > max_stack_cell_num)
max_stack_cell_num = stack_cell_num;
break;
}
*p_frame_ref = frame_ref;
*p_frame_ref_size = frame_ref_size;
*p_max_stack_cell_num = max_stack_cell_num;
*p_stack_cell_num = stack_cell_num;
return true;
fail:
return false;
}
#define PUSH_TYPE(type) do { \
if (!push_type(type, &frame_ref_bottom, \
&frame_ref_boundary, \
&frame_ref, &frame_ref_size, \
&stack_cell_num, &max_stack_cell_num, \
error_buf, error_buf_size)) \
goto fail; \
} while (0)
static bool
pop_type(uint8 type, uint8 **p_frame_ref, uint32 *p_stack_cell_num,
char *error_buf, uint32 error_buf_size)
{
char *type_str[] = { "f64", "f32", "i64", "i32" };
switch (type) {
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
if (!check_stack_pop(type, *p_frame_ref, *p_stack_cell_num,
error_buf, error_buf_size,
type_str[type - VALUE_TYPE_F64]))
return false;
*p_frame_ref -= 2;
*p_stack_cell_num -= 2;
break;
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
if (!check_stack_pop(type, *p_frame_ref, *p_stack_cell_num,
error_buf, error_buf_size,
type_str[type - VALUE_TYPE_F64]))
return false;
*p_frame_ref -= 1;
*p_stack_cell_num -= 1;
break;
}
return true;
}
#define POP_TYPE(type) do { \
if (!pop_type(type, &frame_ref, &stack_cell_num,\
error_buf, error_buf_size)) \
goto fail; \
} while (0)
#define CHECK_CSP_PUSH() do { \
if (frame_csp >= frame_csp_boundary) { \
MEM_REALLOC(frame_csp_bottom, frame_csp_size, \
(uint32)(frame_csp_size \
+ 8 * sizeof(BranchBlock))); \
frame_csp_size += (uint32)(8 * sizeof(BranchBlock)); \
frame_csp_boundary = frame_csp_bottom + \
frame_csp_size / sizeof(BranchBlock); \
frame_csp = frame_csp_bottom + csp_num; \
} \
} while (0)
#define CHECK_CSP_POP() do { \
if (csp_num < 1) { \
set_error_buf(error_buf, error_buf_size, \
"WASM module load failed: type mismatch: "\
"expect data but block stack was empty"); \
goto fail; \
} \
} while (0)
#define PUSH_CSP(type, ret_type, _start_addr) do { \
CHECK_CSP_PUSH(); \
frame_csp->block_type = type; \
frame_csp->is_block_reachable = false; \
frame_csp->return_type = ret_type; \
frame_csp->start_addr = _start_addr; \
frame_csp->else_addr = NULL; \
frame_csp->end_addr = NULL; \
frame_csp->stack_cell_num = stack_cell_num; \
frame_csp++; \
csp_num++; \
if (csp_num > max_csp_num) \
max_csp_num = csp_num; \
} while (0)
#define POP_CSP() do { \
CHECK_CSP_POP(); \
frame_csp--; \
csp_num--; \
} while (0)
#define GET_LOCAL_INDEX_AND_TYPE() do { \
read_leb_uint32(p, p_end, local_idx); \
if (local_idx >= param_count + local_count) { \
set_error_buf(error_buf, error_buf_size, \
"WASM module load failed: " \
"local index out of range"); \
goto fail; \
} \
local_type = local_idx < param_count \
? param_types[local_idx] \
: local_types[local_idx - param_count]; \
} while (0)
#define CHECK_BR(depth) do { \
if (csp_num < depth + 1) { \
set_error_buf(error_buf, error_buf_size, \
"WASM module load failed: type mismatch: " \
"unexpected end of section or function"); \
goto fail; \
} \
if ((frame_csp - (depth + 1))->block_type != BLOCK_TYPE_LOOP) { \
uint8 tmp_ret_type = (frame_csp - (depth + 1))->return_type; \
if ((tmp_ret_type == VALUE_TYPE_I32 \
&& (stack_cell_num < 1 || *(frame_ref - 1) != REF_I32)) \
|| (tmp_ret_type == VALUE_TYPE_F32 \
&& (stack_cell_num < 1 || *(frame_ref - 1) != REF_F32))\
|| (tmp_ret_type == VALUE_TYPE_I64 \
&& (stack_cell_num < 2 \
|| *(frame_ref - 2) != REF_I64_1 \
|| *(frame_ref - 1) != REF_I64_2)) \
|| (tmp_ret_type == VALUE_TYPE_F64 \
&& (stack_cell_num < 2 \
|| *(frame_ref - 2) != REF_F64_1 \
|| *(frame_ref - 1) != REF_F64_2))) { \
set_error_buf(error_buf, error_buf_size, \
"WASM module load failed: type mismatch: " \
"expect data but stack was empty or other type"); \
goto fail; \
} \
(frame_csp - (depth + 1))->is_block_reachable = true; \
} \
} while (0)
static bool
check_memory(WASMModule *module,
char *error_buf, uint32 error_buf_size)
{
if (module->memory_count == 0
&& module->import_memory_count == 0) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"load or store in module without default memory");
return false;
}
return true;
}
#define CHECK_MEMORY() do { \
if (!check_memory(module, error_buf, error_buf_size)) \
goto fail; \
} while (0)
static bool
wasm_loader_prepare_bytecode(WASMModule *module, WASMFunction *func,
char *error_buf, uint32 error_buf_size)
{
uint8 *p = func->code, *p_end = func->code + func->code_size;
uint8 *frame_ref_bottom = NULL, *frame_ref_boundary, *frame_ref;
BranchBlock *frame_csp_bottom = NULL, *frame_csp_boundary, *frame_csp;
uint32 param_count, local_count, global_count;
uint32 max_stack_cell_num = 0, max_csp_num = 0;
uint32 stack_cell_num = 0, csp_num = 0;
uint32 frame_ref_size, frame_csp_size;
uint8 *param_types, ret_type, *local_types, local_type, global_type;
uint32 count, i, local_idx, global_idx, depth, u32;
int32 i32, i32_const = 0;
int64 i64;
uint8 opcode, u8, block_return_type;
bool return_value = false, is_i32_const = false;
global_count = module->import_global_count + module->global_count;
param_count = func->func_type->param_count;
param_types = func->func_type->types;
ret_type = func->func_type->result_count
? param_types[param_count] : VALUE_TYPE_VOID;
local_count = func->local_count;
local_types = func->local_types;
frame_ref_size = 32;
if (!(frame_ref_bottom = frame_ref = wasm_malloc(frame_ref_size))) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"allocate memory failed");
goto fail;
}
memset(frame_ref_bottom, 0, frame_ref_size);
frame_ref_boundary = frame_ref_bottom + frame_ref_size;
frame_csp_size = sizeof(BranchBlock) * 8;
if (!(frame_csp_bottom = frame_csp = wasm_malloc(frame_csp_size))) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"allocate memory failed");
goto fail;
}
memset(frame_csp_bottom, 0, frame_csp_size);
frame_csp_boundary = frame_csp_bottom + 8;
PUSH_CSP(BLOCK_TYPE_FUNCTION, ret_type, p);
(frame_csp - 1)->is_block_reachable = true;
while (p < p_end) {
opcode = *p++;
switch (opcode) {
case WASM_OP_UNREACHABLE:
goto handle_next_reachable_block;
case WASM_OP_NOP:
break;
case WASM_OP_BLOCK:
/* 0x40/0x7F/0x7E/0x7D/0x7C */
block_return_type = read_uint8(p);
PUSH_CSP(BLOCK_TYPE_BLOCK, block_return_type, p);
break;
case WASM_OP_LOOP:
/* 0x40/0x7F/0x7E/0x7D/0x7C */
block_return_type = read_uint8(p);
PUSH_CSP(BLOCK_TYPE_LOOP, block_return_type, p);
break;
case WASM_OP_IF:
POP_I32();
/* 0x40/0x7F/0x7E/0x7D/0x7C */
block_return_type = read_uint8(p);
PUSH_CSP(BLOCK_TYPE_IF, block_return_type, p);
if (!is_i32_const)
(frame_csp - 1)->is_block_reachable = true;
else {
if (!i32_const) {
if(!wasm_loader_find_block_addr(module,
(frame_csp - 1)->start_addr,
p_end,
(frame_csp - 1)->block_type,
&(frame_csp - 1)->else_addr,
&(frame_csp - 1)->end_addr,
error_buf, error_buf_size))
goto fail;
if ((frame_csp - 1)->else_addr)
p = (frame_csp - 1)->else_addr;
else
p = (frame_csp - 1)->end_addr;
}
}
break;
case WASM_OP_ELSE:
if (csp_num < 2
|| (frame_csp - 1)->block_type != BLOCK_TYPE_IF) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"opcode else found without matched opcode if");
goto fail;
}
(frame_csp - 1)->else_addr = p - 1;
stack_cell_num = (frame_csp - 1)->stack_cell_num;
frame_ref = frame_ref_bottom + stack_cell_num;
break;
case WASM_OP_END:
{
POP_CSP();
POP_TYPE(frame_csp->return_type);
PUSH_TYPE(frame_csp->return_type);
if (csp_num > 0) {
frame_csp->end_addr = p - 1;
}
else {
/* end of function block, function will return,
ignore the following bytecodes */
p = p_end;
}
break;
}
case WASM_OP_BR:
{
read_leb_uint32(p, p_end, depth);
CHECK_BR(depth);
handle_next_reachable_block:
for (i = 1; i <= csp_num; i++)
if ((frame_csp - i)->is_block_reachable)
break;
block_return_type = (frame_csp - i)->return_type;
if(!wasm_loader_find_block_addr(module,
(frame_csp - i)->start_addr,
p_end,
(frame_csp - i)->block_type,
&(frame_csp - i)->else_addr,
&(frame_csp - i)->end_addr,
error_buf, error_buf_size))
goto fail;
stack_cell_num = (frame_csp - i)->stack_cell_num;
frame_ref = frame_ref_bottom + stack_cell_num;
csp_num -= i - 1;
frame_csp -= i - 1;
if ((frame_csp - 1)->block_type == BLOCK_TYPE_IF
&& (frame_csp - 1)->else_addr != NULL
&& p <= (frame_csp - 1)->else_addr)
p = (frame_csp - 1)->else_addr;
else {
p = (frame_csp - 1)->end_addr;
PUSH_TYPE(block_return_type);
}
break;
}
case WASM_OP_BR_IF:
read_leb_uint32(p, p_end, depth);
POP_I32();
CHECK_BR(depth);
if (!is_i32_const)
(frame_csp - (depth + 1))->is_block_reachable = true;
else {
if (i32_const)
goto handle_next_reachable_block;
}
break;
case WASM_OP_BR_TABLE:
{
read_leb_uint32(p, p_end, count);
POP_I32();
/* TODO: check the const */
for (i = 0; i <= count; i++) {
read_leb_uint32(p, p_end, depth);
CHECK_BR(depth);
}
goto handle_next_reachable_block;
}
case WASM_OP_RETURN:
{
POP_TYPE(ret_type);
PUSH_TYPE(ret_type);
if(!wasm_loader_find_block_addr(module,
(frame_csp - 1)->start_addr,
p_end,
(frame_csp - 1)->block_type,
&(frame_csp - 1)->else_addr,
&(frame_csp - 1)->end_addr,
error_buf, error_buf_size))
goto fail;
stack_cell_num = (frame_csp - 1)->stack_cell_num;
frame_ref = frame_ref_bottom + stack_cell_num;
if ((frame_csp - 1)->block_type == BLOCK_TYPE_IF
&& p <= (frame_csp - 1)->else_addr) {
p = (frame_csp - 1)->else_addr;
}
else {
p = (frame_csp - 1)->end_addr;
PUSH_TYPE((frame_csp - 1)->return_type);
}
break;
}
case WASM_OP_CALL:
{
WASMType *func_type;
uint32 func_idx;
int32 idx;
read_leb_uint32(p, p_end, func_idx);
if (func_idx >= module->import_function_count + module->function_count) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"function index out of range");
goto fail;
}
if (func_idx < module->import_function_count)
func_type = module->import_functions[func_idx].u.function.func_type;
else
func_type =
module->functions[func_idx - module->import_function_count]->func_type;
if (func_type->param_count > 0) {
for (idx = (int32)(func_type->param_count - 1); idx >= 0; idx--)
POP_TYPE(func_type->types[idx]);
}
if (func_type->result_count)
PUSH_TYPE(func_type->types[func_type->param_count]);
func->has_op_func_call = true;
break;
}
case WASM_OP_CALL_INDIRECT:
{
int32 idx;
WASMType *func_type;
uint32 type_idx;
if (module->table_count == 0
&& module->import_table_count == 0) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"call indirect without default table");
goto fail;
}
read_leb_uint32(p, p_end, type_idx);
/* reserved byte 0x00 */
if (*p++ != 0x00) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"zero flag expected");
goto fail;
}
POP_I32();
if (type_idx >= module->type_count) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"function index out of range");
goto fail;
}
func_type = module->types[type_idx];
if (func_type->param_count > 0) {
for (idx = (int32)(func_type->param_count - 1); idx >= 0; idx--)
POP_TYPE(func_type->types[idx]);
}
PUSH_TYPE(func_type->types[func_type->param_count]);
func->has_op_func_call = true;
break;
}
case WASM_OP_DROP:
{
if (stack_cell_num <= 0) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"opcode drop was found but stack was empty");
goto fail;
}
if (*(frame_ref - 1) == REF_I32
|| *(frame_ref - 1) == REF_F32) {
frame_ref--;
stack_cell_num--;
*(p - 1) = WASM_OP_DROP_32;
}
else {
if (stack_cell_num <= 1) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"opcode drop was found but stack was empty");
goto fail;
}
frame_ref -= 2;
stack_cell_num -= 2;
*(p - 1) = WASM_OP_DROP_64;
}
break;
}
case WASM_OP_SELECT:
{
uint8 ref_type;
POP_I32();
if (stack_cell_num <= 0) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"opcode select was found but stack was empty");
goto fail;
}
switch (*(frame_ref - 1)) {
case REF_I32:
case REF_F32:
*(p - 1) = WASM_OP_SELECT_32;
break;
case REF_I64_2:
case REF_F64_2:
*(p - 1) = WASM_OP_SELECT_64;
break;
}
ref_type = *(frame_ref - 1);
POP_TYPE(ref_type);
POP_TYPE(ref_type);
PUSH_TYPE(ref_type);
break;
}
case WASM_OP_GET_LOCAL:
{
GET_LOCAL_INDEX_AND_TYPE();
PUSH_TYPE(local_type);
break;
}
case WASM_OP_SET_LOCAL:
{
GET_LOCAL_INDEX_AND_TYPE();
POP_TYPE(local_type);
break;
}
case WASM_OP_TEE_LOCAL:
{
GET_LOCAL_INDEX_AND_TYPE();
POP_TYPE(local_type);
PUSH_TYPE(local_type);
break;
}
case WASM_OP_GET_GLOBAL:
{
read_leb_uint32(p, p_end, global_idx);
if (global_idx >= global_count) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"global index out of range");
goto fail;
}
global_type = global_idx < module->import_global_count
? module->import_globals[global_idx].u.global.type
:module->globals[global_idx - module->import_global_count].type;
PUSH_TYPE(global_type);
break;
}
case WASM_OP_SET_GLOBAL:
{
read_leb_uint32(p, p_end, global_idx);
if (global_idx >= global_count) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"global index out of range");
goto fail;
}
global_type = global_idx < module->import_global_count
? module->import_globals[global_idx].u.global.type
: module->globals[global_idx - module->import_global_count].type;
POP_TYPE(global_type);
break;
}
case WASM_OP_I32_LOAD:
case WASM_OP_I32_LOAD8_S:
case WASM_OP_I32_LOAD8_U:
case WASM_OP_I32_LOAD16_S:
case WASM_OP_I32_LOAD16_U:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_I32();
PUSH_I32();
break;
case WASM_OP_I64_LOAD:
case WASM_OP_I64_LOAD8_S:
case WASM_OP_I64_LOAD8_U:
case WASM_OP_I64_LOAD16_S:
case WASM_OP_I64_LOAD16_U:
case WASM_OP_I64_LOAD32_S:
case WASM_OP_I64_LOAD32_U:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_I32();
PUSH_I64();
break;
case WASM_OP_F32_LOAD:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_I32();
PUSH_F32();
break;
case WASM_OP_F64_LOAD:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_I32();
PUSH_F64();
break;
case WASM_OP_I32_STORE:
case WASM_OP_I32_STORE8:
case WASM_OP_I32_STORE16:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_I32();
POP_I32();
break;
case WASM_OP_I64_STORE:
case WASM_OP_I64_STORE8:
case WASM_OP_I64_STORE16:
case WASM_OP_I64_STORE32:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_I64();
POP_I32();
break;
case WASM_OP_F32_STORE:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_F32();
POP_I32();
break;
case WASM_OP_F64_STORE:
CHECK_MEMORY();
read_leb_uint32(p, p_end, u32); /* align */
read_leb_uint32(p, p_end, u32); /* offset */
POP_F64();
POP_I32();
break;
case WASM_OP_MEMORY_SIZE:
CHECK_MEMORY();
/* reserved byte 0x00 */
if (*p++ != 0x00) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"zero flag expected");
goto fail;
}
PUSH_I32();
break;
case WASM_OP_MEMORY_GROW:
CHECK_MEMORY();
/* reserved byte 0x00 */
if (*p++ != 0x00) {
set_error_buf(error_buf, error_buf_size,
"WASM loader prepare bytecode failed: "
"zero flag expected");
goto fail;
}
POP_I32();
PUSH_I32();
func->has_op_memory_grow = true;
module->possible_memory_grow = true;
break;
case WASM_OP_I32_CONST:
read_leb_int32(p, p_end, i32_const);
/* Currently we only track simple I32_CONST opcode. */
is_i32_const = true;
PUSH_I32();
break;
case WASM_OP_I64_CONST:
read_leb_int64(p, p_end, i64);
PUSH_I64();
break;
case WASM_OP_F32_CONST:
p += sizeof(float32);
PUSH_F32();
break;
case WASM_OP_F64_CONST:
p += sizeof(float64);
PUSH_F64();
break;
case WASM_OP_I32_EQZ:
POP_I32();
PUSH_I32();
break;
case WASM_OP_I32_EQ:
case WASM_OP_I32_NE:
case WASM_OP_I32_LT_S:
case WASM_OP_I32_LT_U:
case WASM_OP_I32_GT_S:
case WASM_OP_I32_GT_U:
case WASM_OP_I32_LE_S:
case WASM_OP_I32_LE_U:
case WASM_OP_I32_GE_S:
case WASM_OP_I32_GE_U:
POP_I32();
POP_I32();
PUSH_I32();
break;
case WASM_OP_I64_EQZ:
POP_I64();
PUSH_I32();
break;
case WASM_OP_I64_EQ:
case WASM_OP_I64_NE:
case WASM_OP_I64_LT_S:
case WASM_OP_I64_LT_U:
case WASM_OP_I64_GT_S:
case WASM_OP_I64_GT_U:
case WASM_OP_I64_LE_S:
case WASM_OP_I64_LE_U:
case WASM_OP_I64_GE_S:
case WASM_OP_I64_GE_U:
POP_I64();
POP_I64();
PUSH_I32();
break;
case WASM_OP_F32_EQ:
case WASM_OP_F32_NE:
case WASM_OP_F32_LT:
case WASM_OP_F32_GT:
case WASM_OP_F32_LE:
case WASM_OP_F32_GE:
POP_F32();
POP_F32();
PUSH_I32();
break;
case WASM_OP_F64_EQ:
case WASM_OP_F64_NE:
case WASM_OP_F64_LT:
case WASM_OP_F64_GT:
case WASM_OP_F64_LE:
case WASM_OP_F64_GE:
POP_F64();
POP_F64();
PUSH_I32();
break;
break;
case WASM_OP_I32_CLZ:
case WASM_OP_I32_CTZ:
case WASM_OP_I32_POPCNT:
POP_I32();
PUSH_I32();
break;
case WASM_OP_I32_ADD:
case WASM_OP_I32_SUB:
case WASM_OP_I32_MUL:
case WASM_OP_I32_DIV_S:
case WASM_OP_I32_DIV_U:
case WASM_OP_I32_REM_S:
case WASM_OP_I32_REM_U:
case WASM_OP_I32_AND:
case WASM_OP_I32_OR:
case WASM_OP_I32_XOR:
case WASM_OP_I32_SHL:
case WASM_OP_I32_SHR_S:
case WASM_OP_I32_SHR_U:
case WASM_OP_I32_ROTL:
case WASM_OP_I32_ROTR:
POP_I32();
POP_I32();
PUSH_I32();
break;
case WASM_OP_I64_CLZ:
case WASM_OP_I64_CTZ:
case WASM_OP_I64_POPCNT:
POP_I64();
PUSH_I64();
break;
case WASM_OP_I64_ADD:
case WASM_OP_I64_SUB:
case WASM_OP_I64_MUL:
case WASM_OP_I64_DIV_S:
case WASM_OP_I64_DIV_U:
case WASM_OP_I64_REM_S:
case WASM_OP_I64_REM_U:
case WASM_OP_I64_AND:
case WASM_OP_I64_OR:
case WASM_OP_I64_XOR:
case WASM_OP_I64_SHL:
case WASM_OP_I64_SHR_S:
case WASM_OP_I64_SHR_U:
case WASM_OP_I64_ROTL:
case WASM_OP_I64_ROTR:
POP_I64();
POP_I64();
PUSH_I64();
break;
case WASM_OP_F32_ABS:
case WASM_OP_F32_NEG:
case WASM_OP_F32_CEIL:
case WASM_OP_F32_FLOOR:
case WASM_OP_F32_TRUNC:
case WASM_OP_F32_NEAREST:
case WASM_OP_F32_SQRT:
POP_F32();
PUSH_F32();
break;
case WASM_OP_F32_ADD:
case WASM_OP_F32_SUB:
case WASM_OP_F32_MUL:
case WASM_OP_F32_DIV:
case WASM_OP_F32_MIN:
case WASM_OP_F32_MAX:
case WASM_OP_F32_COPYSIGN:
POP_F32();
POP_F32();
PUSH_F32();
break;
case WASM_OP_F64_ABS:
case WASM_OP_F64_NEG:
case WASM_OP_F64_CEIL:
case WASM_OP_F64_FLOOR:
case WASM_OP_F64_TRUNC:
case WASM_OP_F64_NEAREST:
case WASM_OP_F64_SQRT:
POP_F64();
PUSH_F64();
break;
case WASM_OP_F64_ADD:
case WASM_OP_F64_SUB:
case WASM_OP_F64_MUL:
case WASM_OP_F64_DIV:
case WASM_OP_F64_MIN:
case WASM_OP_F64_MAX:
case WASM_OP_F64_COPYSIGN:
POP_F64();
POP_F64();
PUSH_F64();
break;
case WASM_OP_I32_WRAP_I64:
POP_I64();
PUSH_I32();
break;
case WASM_OP_I32_TRUNC_S_F32:
case WASM_OP_I32_TRUNC_U_F32:
POP_F32();
PUSH_I32();
break;
case WASM_OP_I32_TRUNC_S_F64:
case WASM_OP_I32_TRUNC_U_F64:
POP_F64();
PUSH_I32();
break;
case WASM_OP_I64_EXTEND_S_I32:
case WASM_OP_I64_EXTEND_U_I32:
POP_I32();
PUSH_I64();
break;
case WASM_OP_I64_TRUNC_S_F32:
case WASM_OP_I64_TRUNC_U_F32:
POP_F32();
PUSH_I64();
break;
case WASM_OP_I64_TRUNC_S_F64:
case WASM_OP_I64_TRUNC_U_F64:
POP_F64();
PUSH_I64();
break;
case WASM_OP_F32_CONVERT_S_I32:
case WASM_OP_F32_CONVERT_U_I32:
POP_I32();
PUSH_F32();
break;
case WASM_OP_F32_CONVERT_S_I64:
case WASM_OP_F32_CONVERT_U_I64:
POP_I64();
PUSH_F32();
break;
case WASM_OP_F32_DEMOTE_F64:
POP_F64();
PUSH_F32();
break;
case WASM_OP_F64_CONVERT_S_I32:
case WASM_OP_F64_CONVERT_U_I32:
POP_I32();
PUSH_F64();
break;
case WASM_OP_F64_CONVERT_S_I64:
case WASM_OP_F64_CONVERT_U_I64:
POP_I64();
PUSH_F64();
break;
case WASM_OP_F64_PROMOTE_F32:
POP_F32();
PUSH_F64();
break;
case WASM_OP_I32_REINTERPRET_F32:
POP_F32();
PUSH_I32();
break;
case WASM_OP_I64_REINTERPRET_F64:
POP_F64();
PUSH_I64();
break;
case WASM_OP_F32_REINTERPRET_I32:
POP_I32();
PUSH_F32();
break;
case WASM_OP_F64_REINTERPRET_I64:
POP_I64();
PUSH_F64();
break;
default:
if (error_buf != NULL)
snprintf(error_buf, error_buf_size,
"WASM module load failed: "
"invalid opcode %02x.", opcode);
goto fail;
}
if (opcode != WASM_OP_I32_CONST)
is_i32_const = false;
}
if (csp_num > 0) {
set_error_buf(error_buf, error_buf_size,
"WASM module load failed: "
"function body must end with END opcode.");
goto fail;
}
func->max_stack_cell_num = max_stack_cell_num;
func->max_block_num = max_csp_num;
return_value = true;
fail:
if (frame_ref_bottom)
wasm_free(frame_ref_bottom);
if (frame_csp_bottom)
wasm_free(frame_csp_bottom);
(void)u8;
(void)u32;
(void)i32;
(void)i64;
return return_value;
}