This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/iwasm/interpreter/wasm_interp_classic.c
Wenyong Huang 40a14b51c5
Enable running mode control for runtime and module instance (#1923)
Enable setting running mode when executing a wasm bytecode file
- Four running modes are supported: interpreter, fast-jit, llvm-jit and multi-tier-jit
- Add APIs to set/get the default running mode of the runtime
- Add APIs to set/get the running mode of a wasm module instance
- Add running mode options for iwasm command line tool

And add size/opt level options for LLVM JIT
2023-02-02 18:16:01 +08:00

4270 lines
150 KiB
C

/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasm_interp.h"
#include "bh_log.h"
#include "wasm_runtime.h"
#include "wasm_opcode.h"
#include "wasm_loader.h"
#include "../common/wasm_exec_env.h"
#if WASM_ENABLE_SHARED_MEMORY != 0
#include "../common/wasm_shared_memory.h"
#endif
#if WASM_ENABLE_THREAD_MGR != 0 && WASM_ENABLE_DEBUG_INTERP != 0
#include "../libraries/thread-mgr/thread_manager.h"
#include "../libraries/debug-engine/debug_engine.h"
#endif
#if WASM_ENABLE_FAST_JIT != 0
#include "../fast-jit/jit_compiler.h"
#endif
typedef int32 CellType_I32;
typedef int64 CellType_I64;
typedef float32 CellType_F32;
typedef float64 CellType_F64;
#define BR_TABLE_TMP_BUF_LEN 32
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0
#define CHECK_MEMORY_OVERFLOW(bytes) \
do { \
uint64 offset1 = (uint64)offset + (uint64)addr; \
if (offset1 + bytes <= (uint64)linear_mem_size) \
/* If offset1 is in valid range, maddr must also \
be in valid range, no need to check it again. */ \
maddr = memory->memory_data + offset1; \
else \
goto out_of_bounds; \
} while (0)
#define CHECK_BULK_MEMORY_OVERFLOW(start, bytes, maddr) \
do { \
uint64 offset1 = (uint32)(start); \
if (offset1 + bytes <= (uint64)linear_mem_size) \
/* App heap space is not valid space for \
bulk memory operation */ \
maddr = memory->memory_data + offset1; \
else \
goto out_of_bounds; \
} while (0)
#else
#define CHECK_MEMORY_OVERFLOW(bytes) \
do { \
uint64 offset1 = (uint64)offset + (uint64)addr; \
maddr = memory->memory_data + offset1; \
} while (0)
#define CHECK_BULK_MEMORY_OVERFLOW(start, bytes, maddr) \
do { \
maddr = memory->memory_data + (uint32)(start); \
} while (0)
#endif /* !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 */
#define CHECK_ATOMIC_MEMORY_ACCESS() \
do { \
if (((uintptr_t)maddr & (((uintptr_t)1 << align) - 1)) != 0) \
goto unaligned_atomic; \
} while (0)
#if WASM_ENABLE_DEBUG_INTERP != 0
#define TRIGGER_WATCHPOINT_SIGTRAP() \
do { \
wasm_cluster_thread_send_signal(exec_env, WAMR_SIG_TRAP); \
CHECK_SUSPEND_FLAGS(); \
} while (0)
#define CHECK_WATCHPOINT(list, current_addr) \
do { \
WASMDebugWatchPoint *watchpoint = bh_list_first_elem(list); \
while (watchpoint) { \
WASMDebugWatchPoint *next = bh_list_elem_next(watchpoint); \
if (watchpoint->addr <= current_addr \
&& watchpoint->addr + watchpoint->length > current_addr) { \
TRIGGER_WATCHPOINT_SIGTRAP(); \
} \
watchpoint = next; \
} \
} while (0)
#define CHECK_READ_WATCHPOINT(addr, offset) \
CHECK_WATCHPOINT(watch_point_list_read, WASM_ADDR_OFFSET(addr + offset))
#define CHECK_WRITE_WATCHPOINT(addr, offset) \
CHECK_WATCHPOINT(watch_point_list_write, WASM_ADDR_OFFSET(addr + offset))
#else
#define CHECK_READ_WATCHPOINT(addr, offset) (void)0
#define CHECK_WRITE_WATCHPOINT(addr, offset) (void)0
#endif
static inline uint32
rotl32(uint32 n, uint32 c)
{
const uint32 mask = (31);
c = c % 32;
c &= mask;
return (n << c) | (n >> ((0 - c) & mask));
}
static inline uint32
rotr32(uint32 n, uint32 c)
{
const uint32 mask = (31);
c = c % 32;
c &= mask;
return (n >> c) | (n << ((0 - c) & mask));
}
static inline uint64
rotl64(uint64 n, uint64 c)
{
const uint64 mask = (63);
c = c % 64;
c &= mask;
return (n << c) | (n >> ((0 - c) & mask));
}
static inline uint64
rotr64(uint64 n, uint64 c)
{
const uint64 mask = (63);
c = c % 64;
c &= mask;
return (n >> c) | (n << ((0 - c) & mask));
}
static inline float32
f32_min(float32 a, float32 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? a : b;
else
return a > b ? b : a;
}
static inline float32
f32_max(float32 a, float32 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? b : a;
else
return a > b ? a : b;
}
static inline float64
f64_min(float64 a, float64 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? a : b;
else
return a > b ? b : a;
}
static inline float64
f64_max(float64 a, float64 b)
{
if (isnan(a) || isnan(b))
return NAN;
else if (a == 0 && a == b)
return signbit(a) ? b : a;
else
return a > b ? a : b;
}
static inline uint32
clz32(uint32 type)
{
uint32 num = 0;
if (type == 0)
return 32;
while (!(type & 0x80000000)) {
num++;
type <<= 1;
}
return num;
}
static inline uint32
clz64(uint64 type)
{
uint32 num = 0;
if (type == 0)
return 64;
while (!(type & 0x8000000000000000LL)) {
num++;
type <<= 1;
}
return num;
}
static inline uint32
ctz32(uint32 type)
{
uint32 num = 0;
if (type == 0)
return 32;
while (!(type & 1)) {
num++;
type >>= 1;
}
return num;
}
static inline uint32
ctz64(uint64 type)
{
uint32 num = 0;
if (type == 0)
return 64;
while (!(type & 1)) {
num++;
type >>= 1;
}
return num;
}
static inline uint32
popcount32(uint32 u)
{
uint32 ret = 0;
while (u) {
u = (u & (u - 1));
ret++;
}
return ret;
}
static inline uint32
popcount64(uint64 u)
{
uint32 ret = 0;
while (u) {
u = (u & (u - 1));
ret++;
}
return ret;
}
static float
local_copysignf(float x, float y)
{
union {
float f;
uint32_t i;
} ux = { x }, uy = { y };
ux.i &= 0x7fffffff;
ux.i |= uy.i & 0x80000000;
return ux.f;
}
static double
local_copysign(double x, double y)
{
union {
double f;
uint64_t i;
} ux = { x }, uy = { y };
ux.i &= -1ULL / 2;
ux.i |= uy.i & 1ULL << 63;
return ux.f;
}
static uint64
read_leb(const uint8 *buf, uint32 *p_offset, uint32 maxbits, bool sign)
{
uint64 result = 0, byte;
uint32 offset = *p_offset;
uint32 shift = 0;
while (true) {
byte = buf[offset++];
result |= ((byte & 0x7f) << shift);
shift += 7;
if ((byte & 0x80) == 0) {
break;
}
}
if (sign && (shift < maxbits) && (byte & 0x40)) {
/* Sign extend */
result |= (~((uint64)0)) << shift;
}
*p_offset = offset;
return result;
}
#define skip_leb(p) while (*p++ & 0x80)
#define PUSH_I32(value) \
do { \
*(int32 *)frame_sp++ = (int32)(value); \
} while (0)
#define PUSH_F32(value) \
do { \
*(float32 *)frame_sp++ = (float32)(value); \
} while (0)
#define PUSH_I64(value) \
do { \
PUT_I64_TO_ADDR(frame_sp, value); \
frame_sp += 2; \
} while (0)
#define PUSH_F64(value) \
do { \
PUT_F64_TO_ADDR(frame_sp, value); \
frame_sp += 2; \
} while (0)
#define PUSH_CSP(_label_type, param_cell_num, cell_num, _target_addr) \
do { \
bh_assert(frame_csp < frame->csp_boundary); \
/* frame_csp->label_type = _label_type; */ \
frame_csp->cell_num = cell_num; \
frame_csp->begin_addr = frame_ip; \
frame_csp->target_addr = _target_addr; \
frame_csp->frame_sp = frame_sp - param_cell_num; \
frame_csp++; \
} while (0)
#define POP_I32() (--frame_sp, *(int32 *)frame_sp)
#define POP_F32() (--frame_sp, *(float32 *)frame_sp)
#define POP_I64() (frame_sp -= 2, GET_I64_FROM_ADDR(frame_sp))
#define POP_F64() (frame_sp -= 2, GET_F64_FROM_ADDR(frame_sp))
#define POP_CSP_CHECK_OVERFLOW(n) \
do { \
bh_assert(frame_csp - n >= frame->csp_bottom); \
} while (0)
#define POP_CSP() \
do { \
POP_CSP_CHECK_OVERFLOW(1); \
--frame_csp; \
} while (0)
#define POP_CSP_N(n) \
do { \
uint32 *frame_sp_old = frame_sp; \
uint32 cell_num_to_copy; \
POP_CSP_CHECK_OVERFLOW(n + 1); \
frame_csp -= n; \
frame_ip = (frame_csp - 1)->target_addr; \
/* copy arity values of block */ \
frame_sp = (frame_csp - 1)->frame_sp; \
cell_num_to_copy = (frame_csp - 1)->cell_num; \
if (cell_num_to_copy > 0) { \
word_copy(frame_sp, frame_sp_old - cell_num_to_copy, \
cell_num_to_copy); \
} \
frame_sp += cell_num_to_copy; \
} while (0)
/* Pop the given number of elements from the given frame's stack. */
#define POP(N) \
do { \
int n = (N); \
frame_sp -= n; \
} while (0)
#define SYNC_ALL_TO_FRAME() \
do { \
frame->sp = frame_sp; \
frame->ip = frame_ip; \
frame->csp = frame_csp; \
} while (0)
#define UPDATE_ALL_FROM_FRAME() \
do { \
frame_sp = frame->sp; \
frame_ip = frame->ip; \
frame_csp = frame->csp; \
} while (0)
#define read_leb_int64(p, p_end, res) \
do { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = (int64)_val; \
if (_val & 0x40) \
/* sign extend */ \
res |= 0xFFFFFFFFFFFFFF80LL; \
p++; \
break; \
} \
uint32 _off = 0; \
res = (int64)read_leb(p, &_off, 64, true); \
p += _off; \
} while (0)
#define read_leb_uint32(p, p_end, res) \
do { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = _val; \
p++; \
break; \
} \
uint32 _off = 0; \
res = (uint32)read_leb(p, &_off, 32, false); \
p += _off; \
} while (0)
#define read_leb_int32(p, p_end, res) \
do { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = (int32)_val; \
if (_val & 0x40) \
/* sign extend */ \
res |= 0xFFFFFF80; \
p++; \
break; \
} \
uint32 _off = 0; \
res = (int32)read_leb(p, &_off, 32, true); \
p += _off; \
} while (0)
#if WASM_ENABLE_LABELS_AS_VALUES == 0
#define RECOVER_FRAME_IP_END() frame_ip_end = wasm_get_func_code_end(cur_func)
#else
#define RECOVER_FRAME_IP_END() (void)0
#endif
#define RECOVER_CONTEXT(new_frame) \
do { \
frame = (new_frame); \
cur_func = frame->function; \
prev_frame = frame->prev_frame; \
frame_ip = frame->ip; \
RECOVER_FRAME_IP_END(); \
frame_lp = frame->lp; \
frame_sp = frame->sp; \
frame_csp = frame->csp; \
} while (0)
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define GET_OPCODE() opcode = *(frame_ip - 1);
#else
#define GET_OPCODE() (void)0
#endif
#define DEF_OP_I_CONST(ctype, src_op_type) \
do { \
ctype cval; \
read_leb_##ctype(frame_ip, frame_ip_end, cval); \
PUSH_##src_op_type(cval); \
} while (0)
#define DEF_OP_EQZ(src_op_type) \
do { \
int32 pop_val; \
pop_val = POP_##src_op_type() == 0; \
PUSH_I32(pop_val); \
} while (0)
#define DEF_OP_CMP(src_type, src_op_type, cond) \
do { \
uint32 res; \
src_type val1, val2; \
val2 = (src_type)POP_##src_op_type(); \
val1 = (src_type)POP_##src_op_type(); \
res = val1 cond val2; \
PUSH_I32(res); \
} while (0)
#define DEF_OP_BIT_COUNT(src_type, src_op_type, operation) \
do { \
src_type val1, val2; \
val1 = (src_type)POP_##src_op_type(); \
val2 = (src_type)operation(val1); \
PUSH_##src_op_type(val2); \
} while (0)
#define DEF_OP_NUMERIC(src_type1, src_type2, src_op_type, operation) \
do { \
frame_sp -= sizeof(src_type2) / sizeof(uint32); \
*(src_type1 *)(frame_sp - sizeof(src_type1) / sizeof(uint32)) \
operation## = *(src_type2 *)(frame_sp); \
} while (0)
#if WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS != 0
#define DEF_OP_NUMERIC_64 DEF_OP_NUMERIC
#else
#define DEF_OP_NUMERIC_64(src_type1, src_type2, src_op_type, operation) \
do { \
src_type1 val1; \
src_type2 val2; \
frame_sp -= 2; \
val1 = (src_type1)GET_##src_op_type##_FROM_ADDR(frame_sp - 2); \
val2 = (src_type2)GET_##src_op_type##_FROM_ADDR(frame_sp); \
val1 operation## = val2; \
PUT_##src_op_type##_TO_ADDR(frame_sp - 2, val1); \
} while (0)
#endif
#define DEF_OP_NUMERIC2(src_type1, src_type2, src_op_type, operation) \
do { \
frame_sp -= sizeof(src_type2) / sizeof(uint32); \
*(src_type1 *)(frame_sp - sizeof(src_type1) / sizeof(uint32)) \
operation## = (*(src_type2 *)(frame_sp) % 32); \
} while (0)
#define DEF_OP_NUMERIC2_64(src_type1, src_type2, src_op_type, operation) \
do { \
src_type1 val1; \
src_type2 val2; \
frame_sp -= 2; \
val1 = (src_type1)GET_##src_op_type##_FROM_ADDR(frame_sp - 2); \
val2 = (src_type2)GET_##src_op_type##_FROM_ADDR(frame_sp); \
val1 operation## = (val2 % 64); \
PUT_##src_op_type##_TO_ADDR(frame_sp - 2, val1); \
} while (0)
#define DEF_OP_MATH(src_type, src_op_type, method) \
do { \
src_type src_val; \
src_val = POP_##src_op_type(); \
PUSH_##src_op_type(method(src_val)); \
} while (0)
#define TRUNC_FUNCTION(func_name, src_type, dst_type, signed_type) \
static dst_type func_name(src_type src_value, src_type src_min, \
src_type src_max, dst_type dst_min, \
dst_type dst_max, bool is_sign) \
{ \
dst_type dst_value = 0; \
if (!isnan(src_value)) { \
if (src_value <= src_min) \
dst_value = dst_min; \
else if (src_value >= src_max) \
dst_value = dst_max; \
else { \
if (is_sign) \
dst_value = (dst_type)(signed_type)src_value; \
else \
dst_value = (dst_type)src_value; \
} \
} \
return dst_value; \
}
TRUNC_FUNCTION(trunc_f32_to_i32, float32, uint32, int32)
TRUNC_FUNCTION(trunc_f32_to_i64, float32, uint64, int64)
TRUNC_FUNCTION(trunc_f64_to_i32, float64, uint32, int32)
TRUNC_FUNCTION(trunc_f64_to_i64, float64, uint64, int64)
static bool
trunc_f32_to_int(WASMModuleInstance *module, uint32 *frame_sp, float32 src_min,
float32 src_max, bool saturating, bool is_i32, bool is_sign)
{
float32 src_value = POP_F32();
uint64 dst_value_i64;
uint32 dst_value_i32;
if (!saturating) {
if (isnan(src_value)) {
wasm_set_exception(module, "invalid conversion to integer");
return false;
}
else if (src_value <= src_min || src_value >= src_max) {
wasm_set_exception(module, "integer overflow");
return false;
}
}
if (is_i32) {
uint32 dst_min = is_sign ? INT32_MIN : 0;
uint32 dst_max = is_sign ? INT32_MAX : UINT32_MAX;
dst_value_i32 = trunc_f32_to_i32(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
PUSH_I32(dst_value_i32);
}
else {
uint64 dst_min = is_sign ? INT64_MIN : 0;
uint64 dst_max = is_sign ? INT64_MAX : UINT64_MAX;
dst_value_i64 = trunc_f32_to_i64(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
PUSH_I64(dst_value_i64);
}
return true;
}
static bool
trunc_f64_to_int(WASMModuleInstance *module, uint32 *frame_sp, float64 src_min,
float64 src_max, bool saturating, bool is_i32, bool is_sign)
{
float64 src_value = POP_F64();
uint64 dst_value_i64;
uint32 dst_value_i32;
if (!saturating) {
if (isnan(src_value)) {
wasm_set_exception(module, "invalid conversion to integer");
return false;
}
else if (src_value <= src_min || src_value >= src_max) {
wasm_set_exception(module, "integer overflow");
return false;
}
}
if (is_i32) {
uint32 dst_min = is_sign ? INT32_MIN : 0;
uint32 dst_max = is_sign ? INT32_MAX : UINT32_MAX;
dst_value_i32 = trunc_f64_to_i32(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
PUSH_I32(dst_value_i32);
}
else {
uint64 dst_min = is_sign ? INT64_MIN : 0;
uint64 dst_max = is_sign ? INT64_MAX : UINT64_MAX;
dst_value_i64 = trunc_f64_to_i64(src_value, src_min, src_max, dst_min,
dst_max, is_sign);
PUSH_I64(dst_value_i64);
}
return true;
}
#define DEF_OP_TRUNC_F32(min, max, is_i32, is_sign) \
do { \
if (!trunc_f32_to_int(module, frame_sp, min, max, false, is_i32, \
is_sign)) \
goto got_exception; \
} while (0)
#define DEF_OP_TRUNC_F64(min, max, is_i32, is_sign) \
do { \
if (!trunc_f64_to_int(module, frame_sp, min, max, false, is_i32, \
is_sign)) \
goto got_exception; \
} while (0)
#define DEF_OP_TRUNC_SAT_F32(min, max, is_i32, is_sign) \
do { \
(void)trunc_f32_to_int(module, frame_sp, min, max, true, is_i32, \
is_sign); \
} while (0)
#define DEF_OP_TRUNC_SAT_F64(min, max, is_i32, is_sign) \
do { \
(void)trunc_f64_to_int(module, frame_sp, min, max, true, is_i32, \
is_sign); \
} while (0)
#define DEF_OP_CONVERT(dst_type, dst_op_type, src_type, src_op_type) \
do { \
dst_type value = (dst_type)(src_type)POP_##src_op_type(); \
PUSH_##dst_op_type(value); \
} while (0)
#define GET_LOCAL_INDEX_TYPE_AND_OFFSET() \
do { \
uint32 param_count = cur_func->param_count; \
read_leb_uint32(frame_ip, frame_ip_end, local_idx); \
bh_assert(local_idx < param_count + cur_func->local_count); \
local_offset = cur_func->local_offsets[local_idx]; \
if (local_idx < param_count) \
local_type = cur_func->param_types[local_idx]; \
else \
local_type = cur_func->local_types[local_idx - param_count]; \
} while (0)
#define DEF_ATOMIC_RMW_OPCODE(OP_NAME, op) \
case WASM_OP_ATOMIC_RMW_I32_##OP_NAME: \
case WASM_OP_ATOMIC_RMW_I32_##OP_NAME##8_U: \
case WASM_OP_ATOMIC_RMW_I32_##OP_NAME##16_U: \
{ \
uint32 readv, sval; \
\
sval = POP_I32(); \
addr = POP_I32(); \
\
if (opcode == WASM_OP_ATOMIC_RMW_I32_##OP_NAME##8_U) { \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = (uint32)(*(uint8 *)maddr); \
*(uint8 *)maddr = (uint8)(readv op sval); \
os_mutex_unlock(&module->e->mem_lock); \
} \
else if (opcode == WASM_OP_ATOMIC_RMW_I32_##OP_NAME##16_U) { \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = (uint32)LOAD_U16(maddr); \
STORE_U16(maddr, (uint16)(readv op sval)); \
os_mutex_unlock(&module->e->mem_lock); \
} \
else { \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = LOAD_I32(maddr); \
STORE_U32(maddr, readv op sval); \
os_mutex_unlock(&module->e->mem_lock); \
} \
PUSH_I32(readv); \
break; \
} \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME: \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME##8_U: \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME##16_U: \
case WASM_OP_ATOMIC_RMW_I64_##OP_NAME##32_U: \
{ \
uint64 readv, sval; \
\
sval = (uint64)POP_I64(); \
addr = POP_I32(); \
\
if (opcode == WASM_OP_ATOMIC_RMW_I64_##OP_NAME##8_U) { \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = (uint64)(*(uint8 *)maddr); \
*(uint8 *)maddr = (uint8)(readv op sval); \
os_mutex_unlock(&module->e->mem_lock); \
} \
else if (opcode == WASM_OP_ATOMIC_RMW_I64_##OP_NAME##16_U) { \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = (uint64)LOAD_U16(maddr); \
STORE_U16(maddr, (uint16)(readv op sval)); \
os_mutex_unlock(&module->e->mem_lock); \
} \
else if (opcode == WASM_OP_ATOMIC_RMW_I64_##OP_NAME##32_U) { \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = (uint64)LOAD_U32(maddr); \
STORE_U32(maddr, (uint32)(readv op sval)); \
os_mutex_unlock(&module->e->mem_lock); \
} \
else { \
uint64 op_result; \
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 8, maddr); \
CHECK_ATOMIC_MEMORY_ACCESS(); \
\
os_mutex_lock(&module->e->mem_lock); \
readv = (uint64)LOAD_I64(maddr); \
op_result = readv op sval; \
STORE_I64(maddr, op_result); \
os_mutex_unlock(&module->e->mem_lock); \
} \
PUSH_I64(readv); \
break; \
}
static inline int32
sign_ext_8_32(int8 val)
{
if (val & 0x80)
return (int32)val | (int32)0xffffff00;
return val;
}
static inline int32
sign_ext_16_32(int16 val)
{
if (val & 0x8000)
return (int32)val | (int32)0xffff0000;
return val;
}
static inline int64
sign_ext_8_64(int8 val)
{
if (val & 0x80)
return (int64)val | (int64)0xffffffffffffff00LL;
return val;
}
static inline int64
sign_ext_16_64(int16 val)
{
if (val & 0x8000)
return (int64)val | (int64)0xffffffffffff0000LL;
return val;
}
static inline int64
sign_ext_32_64(int32 val)
{
if (val & (int32)0x80000000)
return (int64)val | (int64)0xffffffff00000000LL;
return val;
}
static inline void
word_copy(uint32 *dest, uint32 *src, unsigned num)
{
bh_assert(dest != NULL);
bh_assert(src != NULL);
bh_assert(num > 0);
if (dest != src) {
/* No overlap buffer */
bh_assert(!((src < dest) && (dest < src + num)));
for (; num > 0; num--)
*dest++ = *src++;
}
}
static inline WASMInterpFrame *
ALLOC_FRAME(WASMExecEnv *exec_env, uint32 size, WASMInterpFrame *prev_frame)
{
WASMInterpFrame *frame = wasm_exec_env_alloc_wasm_frame(exec_env, size);
if (frame) {
frame->prev_frame = prev_frame;
#if WASM_ENABLE_PERF_PROFILING != 0
frame->time_started = os_time_get_boot_microsecond();
#endif
}
else {
wasm_set_exception((WASMModuleInstance *)exec_env->module_inst,
"wasm operand stack overflow");
}
return frame;
}
static inline void
FREE_FRAME(WASMExecEnv *exec_env, WASMInterpFrame *frame)
{
#if WASM_ENABLE_PERF_PROFILING != 0
if (frame->function) {
frame->function->total_exec_time +=
os_time_get_boot_microsecond() - frame->time_started;
frame->function->total_exec_cnt++;
}
#endif
wasm_exec_env_free_wasm_frame(exec_env, frame);
}
static void
wasm_interp_call_func_native(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMFunctionImport *func_import = cur_func->u.func_import;
CApiFuncImport *c_api_func_import = NULL;
unsigned local_cell_num = 2;
WASMInterpFrame *frame;
uint32 argv_ret[2], cur_func_index;
void *native_func_pointer = NULL;
char buf[128];
bool ret;
if (!(frame = ALLOC_FRAME(exec_env,
wasm_interp_interp_frame_size(local_cell_num),
prev_frame)))
return;
frame->function = cur_func;
frame->ip = NULL;
frame->sp = frame->lp + local_cell_num;
wasm_exec_env_set_cur_frame(exec_env, frame);
cur_func_index = (uint32)(cur_func - module_inst->e->functions);
bh_assert(cur_func_index < module_inst->module->import_function_count);
if (!func_import->call_conv_wasm_c_api) {
native_func_pointer = module_inst->import_func_ptrs[cur_func_index];
}
else if (module_inst->e->c_api_func_imports) {
c_api_func_import = module_inst->e->c_api_func_imports + cur_func_index;
native_func_pointer = c_api_func_import->func_ptr_linked;
}
if (!native_func_pointer) {
snprintf(buf, sizeof(buf),
"failed to call unlinked import function (%s, %s)",
func_import->module_name, func_import->field_name);
wasm_set_exception(module_inst, buf);
return;
}
if (func_import->call_conv_wasm_c_api) {
ret = wasm_runtime_invoke_c_api_native(
(WASMModuleInstanceCommon *)module_inst, native_func_pointer,
func_import->func_type, cur_func->param_cell_num, frame->lp,
c_api_func_import->with_env_arg, c_api_func_import->env_arg);
if (ret) {
argv_ret[0] = frame->lp[0];
argv_ret[1] = frame->lp[1];
}
}
else if (!func_import->call_conv_raw) {
ret = wasm_runtime_invoke_native(
exec_env, native_func_pointer, func_import->func_type,
func_import->signature, func_import->attachment, frame->lp,
cur_func->param_cell_num, argv_ret);
}
else {
ret = wasm_runtime_invoke_native_raw(
exec_env, native_func_pointer, func_import->func_type,
func_import->signature, func_import->attachment, frame->lp,
cur_func->param_cell_num, argv_ret);
}
if (!ret)
return;
if (cur_func->ret_cell_num == 1) {
prev_frame->sp[0] = argv_ret[0];
prev_frame->sp++;
}
else if (cur_func->ret_cell_num == 2) {
prev_frame->sp[0] = argv_ret[0];
prev_frame->sp[1] = argv_ret[1];
prev_frame->sp += 2;
}
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
}
#if WASM_ENABLE_FAST_JIT != 0
bool
fast_jit_invoke_native(WASMExecEnv *exec_env, uint32 func_idx,
WASMInterpFrame *prev_frame)
{
WASMModuleInstance *module_inst =
(WASMModuleInstance *)exec_env->module_inst;
WASMFunctionInstance *cur_func = module_inst->e->functions + func_idx;
wasm_interp_call_func_native(module_inst, exec_env, cur_func, prev_frame);
return wasm_get_exception(module_inst) ? false : true;
}
#endif
#if WASM_ENABLE_MULTI_MODULE != 0
static void
wasm_interp_call_func_bytecode(WASMModuleInstance *module,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame);
static void
wasm_interp_call_func_import(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMModuleInstance *sub_module_inst = cur_func->import_module_inst;
WASMFunctionInstance *sub_func_inst = cur_func->import_func_inst;
WASMFunctionImport *func_import = cur_func->u.func_import;
uint8 *ip = prev_frame->ip;
char buf[128];
WASMExecEnv *sub_module_exec_env = NULL;
uint32 aux_stack_origin_boundary = 0;
uint32 aux_stack_origin_bottom = 0;
if (!sub_func_inst) {
snprintf(buf, sizeof(buf),
"failed to call unlinked import function (%s, %s)",
func_import->module_name, func_import->field_name);
wasm_set_exception(module_inst, buf);
return;
}
/* Switch exec_env but keep using the same one by replacing necessary
* variables */
sub_module_exec_env = wasm_runtime_get_exec_env_singleton(
(WASMModuleInstanceCommon *)sub_module_inst);
if (!sub_module_exec_env) {
wasm_set_exception(module_inst, "create singleton exec_env failed");
return;
}
/* - module_inst */
exec_env->module_inst = (WASMModuleInstanceCommon *)sub_module_inst;
/* - aux_stack_boundary */
aux_stack_origin_boundary = exec_env->aux_stack_boundary.boundary;
exec_env->aux_stack_boundary.boundary =
sub_module_exec_env->aux_stack_boundary.boundary;
/* - aux_stack_bottom */
aux_stack_origin_bottom = exec_env->aux_stack_bottom.bottom;
exec_env->aux_stack_bottom.bottom =
sub_module_exec_env->aux_stack_bottom.bottom;
/* set ip NULL to make call_func_bytecode return after executing
this function */
prev_frame->ip = NULL;
/* call function of sub-module*/
wasm_interp_call_func_bytecode(sub_module_inst, exec_env, sub_func_inst,
prev_frame);
/* restore ip and other replaced */
prev_frame->ip = ip;
exec_env->aux_stack_boundary.boundary = aux_stack_origin_boundary;
exec_env->aux_stack_bottom.bottom = aux_stack_origin_bottom;
exec_env->module_inst = (WASMModuleInstanceCommon *)module_inst;
/* transfer exception if it is thrown */
if (wasm_get_exception(sub_module_inst)) {
bh_memcpy_s(module_inst->cur_exception,
sizeof(module_inst->cur_exception),
sub_module_inst->cur_exception,
sizeof(sub_module_inst->cur_exception));
}
}
#endif
#if WASM_ENABLE_THREAD_MGR != 0
#if WASM_ENABLE_DEBUG_INTERP != 0
#define CHECK_SUSPEND_FLAGS() \
do { \
if (IS_WAMR_TERM_SIG(exec_env->current_status->signal_flag)) { \
return; \
} \
if (IS_WAMR_STOP_SIG(exec_env->current_status->signal_flag)) { \
SYNC_ALL_TO_FRAME(); \
wasm_cluster_thread_waiting_run(exec_env); \
} \
} while (0)
#else
#define CHECK_SUSPEND_FLAGS() \
do { \
if (exec_env->suspend_flags.flags != 0) { \
if (exec_env->suspend_flags.flags & 0x01) { \
/* terminate current thread */ \
return; \
} \
while (exec_env->suspend_flags.flags & 0x02) { \
/* suspend current thread */ \
os_cond_wait(&exec_env->wait_cond, &exec_env->wait_lock); \
} \
} \
} while (0)
#endif /* WASM_ENABLE_DEBUG_INTERP */
#endif /* WASM_ENABLE_THREAD_MGR */
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define HANDLE_OP(opcode) HANDLE_##opcode:
#define FETCH_OPCODE_AND_DISPATCH() goto *handle_table[*frame_ip++]
#if WASM_ENABLE_THREAD_MGR != 0 && WASM_ENABLE_DEBUG_INTERP != 0
#define HANDLE_OP_END() \
do { \
/* Record the current frame_ip, so when exception occurs, \
debugger can know the exact opcode who caused the exception */ \
frame_ip_orig = frame_ip; \
while (exec_env->current_status->signal_flag == WAMR_SIG_SINGSTEP \
&& exec_env->current_status->step_count++ == 1) { \
exec_env->current_status->step_count = 0; \
SYNC_ALL_TO_FRAME(); \
wasm_cluster_thread_waiting_run(exec_env); \
} \
goto *handle_table[*frame_ip++]; \
} while (0)
#else
#define HANDLE_OP_END() FETCH_OPCODE_AND_DISPATCH()
#endif
#else /* else of WASM_ENABLE_LABELS_AS_VALUES */
#define HANDLE_OP(opcode) case opcode:
#if WASM_ENABLE_THREAD_MGR != 0 && WASM_ENABLE_DEBUG_INTERP != 0
#define HANDLE_OP_END() \
if (exec_env->current_status->signal_flag == WAMR_SIG_SINGSTEP \
&& exec_env->current_status->step_count++ == 2) { \
exec_env->current_status->step_count = 0; \
SYNC_ALL_TO_FRAME(); \
wasm_cluster_thread_waiting_run(exec_env); \
} \
continue
#else
#define HANDLE_OP_END() continue
#endif
#endif /* end of WASM_ENABLE_LABELS_AS_VALUES */
static inline uint8 *
get_global_addr(uint8 *global_data, WASMGlobalInstance *global)
{
#if WASM_ENABLE_MULTI_MODULE == 0
return global_data + global->data_offset;
#else
return global->import_global_inst
? global->import_module_inst->global_data
+ global->import_global_inst->data_offset
: global_data + global->data_offset;
#endif
}
static void
wasm_interp_call_func_bytecode(WASMModuleInstance *module,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMMemoryInstance *memory = wasm_get_default_memory(module);
uint8 *global_data = module->global_data;
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
uint32 num_bytes_per_page = memory ? memory->num_bytes_per_page : 0;
uint32 linear_mem_size =
memory ? num_bytes_per_page * memory->cur_page_count : 0;
#endif
WASMType **wasm_types = module->module->types;
WASMGlobalInstance *globals = module->e->globals, *global;
uint8 opcode_IMPDEP = WASM_OP_IMPDEP;
WASMInterpFrame *frame = NULL;
/* Points to this special opcode so as to jump to the
* call_method_from_entry. */
register uint8 *frame_ip = &opcode_IMPDEP; /* cache of frame->ip */
register uint32 *frame_lp = NULL; /* cache of frame->lp */
register uint32 *frame_sp = NULL; /* cache of frame->sp */
WASMBranchBlock *frame_csp = NULL;
BlockAddr *cache_items;
uint8 *frame_ip_end = frame_ip + 1;
uint8 opcode;
uint32 i, depth, cond, count, fidx, tidx, lidx, frame_size = 0;
uint32 all_cell_num = 0;
int32 val;
uint8 *else_addr, *end_addr, *maddr = NULL;
uint32 local_idx, local_offset, global_idx;
uint8 local_type, *global_addr;
uint32 cache_index, type_index, param_cell_num, cell_num;
uint8 value_type;
#if WASM_ENABLE_DEBUG_INTERP != 0
uint8 *frame_ip_orig = NULL;
WASMDebugInstance *debug_instance = wasm_exec_env_get_instance(exec_env);
bh_list *watch_point_list_read =
debug_instance ? &debug_instance->watch_point_list_read : NULL;
bh_list *watch_point_list_write =
debug_instance ? &debug_instance->watch_point_list_write : NULL;
#endif
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define HANDLE_OPCODE(op) &&HANDLE_##op
DEFINE_GOTO_TABLE(const void *, handle_table);
#undef HANDLE_OPCODE
#endif
#if WASM_ENABLE_LABELS_AS_VALUES == 0
while (frame_ip < frame_ip_end) {
opcode = *frame_ip++;
switch (opcode) {
#else
FETCH_OPCODE_AND_DISPATCH();
#endif
/* control instructions */
HANDLE_OP(WASM_OP_UNREACHABLE)
{
wasm_set_exception(module, "unreachable");
goto got_exception;
}
HANDLE_OP(WASM_OP_NOP) { HANDLE_OP_END(); }
HANDLE_OP(EXT_OP_BLOCK)
{
read_leb_uint32(frame_ip, frame_ip_end, type_index);
param_cell_num = wasm_types[type_index]->param_cell_num;
cell_num = wasm_types[type_index]->ret_cell_num;
goto handle_op_block;
}
HANDLE_OP(WASM_OP_BLOCK)
{
value_type = *frame_ip++;
param_cell_num = 0;
cell_num = wasm_value_type_cell_num(value_type);
handle_op_block:
cache_index = ((uintptr_t)frame_ip)
& (uintptr_t)(BLOCK_ADDR_CACHE_SIZE - 1);
cache_items = exec_env->block_addr_cache[cache_index];
if (cache_items[0].start_addr == frame_ip) {
end_addr = cache_items[0].end_addr;
}
else if (cache_items[1].start_addr == frame_ip) {
end_addr = cache_items[1].end_addr;
}
#if WASM_ENABLE_DEBUG_INTERP != 0
else if (!wasm_loader_find_block_addr(
exec_env, (BlockAddr *)exec_env->block_addr_cache,
frame_ip, (uint8 *)-1, LABEL_TYPE_BLOCK,
&else_addr, &end_addr)) {
wasm_set_exception(module, "find block address failed");
goto got_exception;
}
#endif
else {
end_addr = NULL;
}
PUSH_CSP(LABEL_TYPE_BLOCK, param_cell_num, cell_num, end_addr);
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_LOOP)
{
read_leb_uint32(frame_ip, frame_ip_end, type_index);
param_cell_num = wasm_types[type_index]->param_cell_num;
cell_num = wasm_types[type_index]->param_cell_num;
goto handle_op_loop;
}
HANDLE_OP(WASM_OP_LOOP)
{
value_type = *frame_ip++;
param_cell_num = 0;
cell_num = 0;
handle_op_loop:
PUSH_CSP(LABEL_TYPE_LOOP, param_cell_num, cell_num, frame_ip);
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_IF)
{
read_leb_uint32(frame_ip, frame_ip_end, type_index);
param_cell_num = wasm_types[type_index]->param_cell_num;
cell_num = wasm_types[type_index]->ret_cell_num;
goto handle_op_if;
}
HANDLE_OP(WASM_OP_IF)
{
value_type = *frame_ip++;
param_cell_num = 0;
cell_num = wasm_value_type_cell_num(value_type);
handle_op_if:
cache_index = ((uintptr_t)frame_ip)
& (uintptr_t)(BLOCK_ADDR_CACHE_SIZE - 1);
cache_items = exec_env->block_addr_cache[cache_index];
if (cache_items[0].start_addr == frame_ip) {
else_addr = cache_items[0].else_addr;
end_addr = cache_items[0].end_addr;
}
else if (cache_items[1].start_addr == frame_ip) {
else_addr = cache_items[1].else_addr;
end_addr = cache_items[1].end_addr;
}
else if (!wasm_loader_find_block_addr(
exec_env, (BlockAddr *)exec_env->block_addr_cache,
frame_ip, (uint8 *)-1, LABEL_TYPE_IF, &else_addr,
&end_addr)) {
wasm_set_exception(module, "find block address failed");
goto got_exception;
}
cond = (uint32)POP_I32();
if (cond) { /* if branch is met */
PUSH_CSP(LABEL_TYPE_IF, param_cell_num, cell_num, end_addr);
}
else { /* if branch is not met */
/* if there is no else branch, go to the end addr */
if (else_addr == NULL) {
frame_ip = end_addr + 1;
}
/* if there is an else branch, go to the else addr */
else {
PUSH_CSP(LABEL_TYPE_IF, param_cell_num, cell_num,
end_addr);
frame_ip = else_addr + 1;
}
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_ELSE)
{
/* comes from the if branch in WASM_OP_IF */
frame_ip = (frame_csp - 1)->target_addr;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_END)
{
if (frame_csp > frame->csp_bottom + 1) {
POP_CSP();
}
else { /* end of function, treat as WASM_OP_RETURN */
frame_sp -= cur_func->ret_cell_num;
for (i = 0; i < cur_func->ret_cell_num; i++) {
*prev_frame->sp++ = frame_sp[i];
}
goto return_func;
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
read_leb_uint32(frame_ip, frame_ip_end, depth);
label_pop_csp_n:
POP_CSP_N(depth);
if (!frame_ip) { /* must be label pushed by WASM_OP_BLOCK */
if (!wasm_loader_find_block_addr(
exec_env, (BlockAddr *)exec_env->block_addr_cache,
(frame_csp - 1)->begin_addr, (uint8 *)-1,
LABEL_TYPE_BLOCK, &else_addr, &end_addr)) {
wasm_set_exception(module, "find block address failed");
goto got_exception;
}
frame_ip = end_addr;
}
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR_IF)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
read_leb_uint32(frame_ip, frame_ip_end, depth);
cond = (uint32)POP_I32();
if (cond)
goto label_pop_csp_n;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_BR_TABLE)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
read_leb_uint32(frame_ip, frame_ip_end, count);
lidx = POP_I32();
if (lidx > count)
lidx = count;
depth = frame_ip[lidx];
goto label_pop_csp_n;
}
HANDLE_OP(EXT_OP_BR_TABLE_CACHE)
{
BrTableCache *node =
bh_list_first_elem(module->module->br_table_cache_list);
BrTableCache *node_next;
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
lidx = POP_I32();
while (node) {
node_next = bh_list_elem_next(node);
if (node->br_table_op_addr == frame_ip - 1) {
depth = node->br_depths[lidx];
goto label_pop_csp_n;
}
node = node_next;
}
bh_assert(0);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_RETURN)
{
frame_sp -= cur_func->ret_cell_num;
for (i = 0; i < cur_func->ret_cell_num; i++) {
*prev_frame->sp++ = frame_sp[i];
}
goto return_func;
}
HANDLE_OP(WASM_OP_CALL)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
read_leb_uint32(frame_ip, frame_ip_end, fidx);
#if WASM_ENABLE_MULTI_MODULE != 0
if (fidx >= module->e->function_count) {
wasm_set_exception(module, "unknown function");
goto got_exception;
}
#endif
cur_func = module->e->functions + fidx;
goto call_func_from_interp;
}
#if WASM_ENABLE_TAIL_CALL != 0
HANDLE_OP(WASM_OP_RETURN_CALL)
{
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
read_leb_uint32(frame_ip, frame_ip_end, fidx);
#if WASM_ENABLE_MULTI_MODULE != 0
if (fidx >= module->e->function_count) {
wasm_set_exception(module, "unknown function");
goto got_exception;
}
#endif
cur_func = module->e->functions + fidx;
goto call_func_from_return_call;
}
#endif /* WASM_ENABLE_TAIL_CALL */
HANDLE_OP(WASM_OP_CALL_INDIRECT)
#if WASM_ENABLE_TAIL_CALL != 0
HANDLE_OP(WASM_OP_RETURN_CALL_INDIRECT)
#endif
{
WASMType *cur_type, *cur_func_type;
WASMTableInstance *tbl_inst;
uint32 tbl_idx;
#if WASM_ENABLE_TAIL_CALL != 0
opcode = *(frame_ip - 1);
#endif
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
/**
* type check. compiler will make sure all like
* (call_indirect (type $x) (i32.const 1))
* the function type has to be defined in the module also
* no matter it is used or not
*/
read_leb_uint32(frame_ip, frame_ip_end, tidx);
bh_assert(tidx < module->module->type_count);
cur_type = wasm_types[tidx];
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
val = POP_I32();
if ((uint32)val >= tbl_inst->cur_size) {
wasm_set_exception(module, "undefined element");
goto got_exception;
}
fidx = tbl_inst->elems[val];
if (fidx == NULL_REF) {
wasm_set_exception(module, "uninitialized element");
goto got_exception;
}
/*
* we might be using a table injected by host or
* another module. In that case, we don't validate
* the elem value while loading
*/
if (fidx >= module->e->function_count) {
wasm_set_exception(module, "unknown function");
goto got_exception;
}
/* always call module own functions */
cur_func = module->e->functions + fidx;
if (cur_func->is_import_func)
cur_func_type = cur_func->u.func_import->func_type;
else
cur_func_type = cur_func->u.func->func_type;
if (cur_type != cur_func_type) {
wasm_set_exception(module, "indirect call type mismatch");
goto got_exception;
}
#if WASM_ENABLE_TAIL_CALL != 0
if (opcode == WASM_OP_RETURN_CALL_INDIRECT)
goto call_func_from_return_call;
#endif
goto call_func_from_interp;
}
/* parametric instructions */
HANDLE_OP(WASM_OP_DROP)
{
frame_sp--;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_DROP_64)
{
frame_sp -= 2;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SELECT)
{
cond = (uint32)POP_I32();
frame_sp--;
if (!cond)
*(frame_sp - 1) = *frame_sp;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SELECT_64)
{
cond = (uint32)POP_I32();
frame_sp -= 2;
if (!cond) {
*(frame_sp - 2) = *frame_sp;
*(frame_sp - 1) = *(frame_sp + 1);
}
HANDLE_OP_END();
}
#if WASM_ENABLE_REF_TYPES != 0
HANDLE_OP(WASM_OP_SELECT_T)
{
uint32 vec_len;
uint8 type;
read_leb_uint32(frame_ip, frame_ip_end, vec_len);
type = *frame_ip++;
cond = (uint32)POP_I32();
if (type == VALUE_TYPE_I64 || type == VALUE_TYPE_F64) {
frame_sp -= 2;
if (!cond) {
*(frame_sp - 2) = *frame_sp;
*(frame_sp - 1) = *(frame_sp + 1);
}
}
else {
frame_sp--;
if (!cond)
*(frame_sp - 1) = *frame_sp;
}
(void)vec_len;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_TABLE_GET)
{
uint32 tbl_idx, elem_idx;
WASMTableInstance *tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
elem_idx = POP_I32();
if (elem_idx >= tbl_inst->cur_size) {
wasm_set_exception(module, "out of bounds table access");
goto got_exception;
}
PUSH_I32(tbl_inst->elems[elem_idx]);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_TABLE_SET)
{
uint32 tbl_idx, elem_idx, elem_val;
WASMTableInstance *tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
elem_val = POP_I32();
elem_idx = POP_I32();
if (elem_idx >= tbl_inst->cur_size) {
wasm_set_exception(module, "out of bounds table access");
goto got_exception;
}
tbl_inst->elems[elem_idx] = elem_val;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_NULL)
{
uint32 ref_type;
read_leb_uint32(frame_ip, frame_ip_end, ref_type);
PUSH_I32(NULL_REF);
(void)ref_type;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_IS_NULL)
{
uint32 ref_val;
ref_val = POP_I32();
PUSH_I32(ref_val == NULL_REF ? 1 : 0);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_REF_FUNC)
{
uint32 func_idx;
read_leb_uint32(frame_ip, frame_ip_end, func_idx);
PUSH_I32(func_idx);
HANDLE_OP_END();
}
#endif /* WASM_ENABLE_REF_TYPES */
/* variable instructions */
HANDLE_OP(WASM_OP_GET_LOCAL)
{
GET_LOCAL_INDEX_TYPE_AND_OFFSET();
switch (local_type) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
#if WASM_ENABLE_REF_TYPES != 0
case VALUE_TYPE_FUNCREF:
case VALUE_TYPE_EXTERNREF:
#endif
PUSH_I32(*(int32 *)(frame_lp + local_offset));
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
PUSH_I64(GET_I64_FROM_ADDR(frame_lp + local_offset));
break;
default:
wasm_set_exception(module, "invalid local type");
goto got_exception;
}
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_GET_LOCAL_FAST)
{
local_offset = *frame_ip++;
if (local_offset & 0x80)
PUSH_I64(
GET_I64_FROM_ADDR(frame_lp + (local_offset & 0x7F)));
else
PUSH_I32(*(int32 *)(frame_lp + local_offset));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_LOCAL)
{
GET_LOCAL_INDEX_TYPE_AND_OFFSET();
switch (local_type) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
#if WASM_ENABLE_REF_TYPES != 0
case VALUE_TYPE_FUNCREF:
case VALUE_TYPE_EXTERNREF:
#endif
*(int32 *)(frame_lp + local_offset) = POP_I32();
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
PUT_I64_TO_ADDR((uint32 *)(frame_lp + local_offset),
POP_I64());
break;
default:
wasm_set_exception(module, "invalid local type");
goto got_exception;
}
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_SET_LOCAL_FAST)
{
local_offset = *frame_ip++;
if (local_offset & 0x80)
PUT_I64_TO_ADDR(
(uint32 *)(frame_lp + (local_offset & 0x7F)),
POP_I64());
else
*(int32 *)(frame_lp + local_offset) = POP_I32();
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_TEE_LOCAL)
{
GET_LOCAL_INDEX_TYPE_AND_OFFSET();
switch (local_type) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
#if WASM_ENABLE_REF_TYPES != 0
case VALUE_TYPE_FUNCREF:
case VALUE_TYPE_EXTERNREF:
#endif
*(int32 *)(frame_lp + local_offset) =
*(int32 *)(frame_sp - 1);
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
PUT_I64_TO_ADDR((uint32 *)(frame_lp + local_offset),
GET_I64_FROM_ADDR(frame_sp - 2));
break;
default:
wasm_set_exception(module, "invalid local type");
goto got_exception;
}
HANDLE_OP_END();
}
HANDLE_OP(EXT_OP_TEE_LOCAL_FAST)
{
local_offset = *frame_ip++;
if (local_offset & 0x80)
PUT_I64_TO_ADDR(
(uint32 *)(frame_lp + (local_offset & 0x7F)),
GET_I64_FROM_ADDR(frame_sp - 2));
else
*(int32 *)(frame_lp + local_offset) =
*(int32 *)(frame_sp - 1);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_GET_GLOBAL)
{
read_leb_uint32(frame_ip, frame_ip_end, global_idx);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
PUSH_I32(*(uint32 *)global_addr);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_GET_GLOBAL_64)
{
read_leb_uint32(frame_ip, frame_ip_end, global_idx);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
PUSH_I64(GET_I64_FROM_ADDR((uint32 *)global_addr));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_GLOBAL)
{
read_leb_uint32(frame_ip, frame_ip_end, global_idx);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
*(int32 *)global_addr = POP_I32();
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_GLOBAL_AUX_STACK)
{
uint32 aux_stack_top;
read_leb_uint32(frame_ip, frame_ip_end, global_idx);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
aux_stack_top = *(uint32 *)(frame_sp - 1);
if (aux_stack_top <= exec_env->aux_stack_boundary.boundary) {
wasm_set_exception(module, "wasm auxiliary stack overflow");
goto got_exception;
}
if (aux_stack_top > exec_env->aux_stack_bottom.bottom) {
wasm_set_exception(module,
"wasm auxiliary stack underflow");
goto got_exception;
}
*(int32 *)global_addr = aux_stack_top;
frame_sp--;
#if WASM_ENABLE_MEMORY_PROFILING != 0
if (module->module->aux_stack_top_global_index != (uint32)-1) {
uint32 aux_stack_used = module->module->aux_stack_bottom
- *(uint32 *)global_addr;
if (aux_stack_used > module->e->max_aux_stack_used)
module->e->max_aux_stack_used = aux_stack_used;
}
#endif
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_SET_GLOBAL_64)
{
read_leb_uint32(frame_ip, frame_ip_end, global_idx);
bh_assert(global_idx < module->e->global_count);
global = globals + global_idx;
global_addr = get_global_addr(global_data, global);
PUT_I64_TO_ADDR((uint32 *)global_addr, POP_I64());
HANDLE_OP_END();
}
/* memory load instructions */
HANDLE_OP(WASM_OP_I32_LOAD)
HANDLE_OP(WASM_OP_F32_LOAD)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(4);
PUSH_I32(LOAD_I32(maddr));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD)
HANDLE_OP(WASM_OP_F64_LOAD)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(8);
PUSH_I64(LOAD_I64(maddr));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD8_S)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(1);
PUSH_I32(sign_ext_8_32(*(int8 *)maddr));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD8_U)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(1);
PUSH_I32((uint32)(*(uint8 *)maddr));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD16_S)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(2);
PUSH_I32(sign_ext_16_32(LOAD_I16(maddr)));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LOAD16_U)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(2);
PUSH_I32((uint32)(LOAD_U16(maddr)));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD8_S)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(1);
PUSH_I64(sign_ext_8_64(*(int8 *)maddr));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD8_U)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(1);
PUSH_I64((uint64)(*(uint8 *)maddr));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD16_S)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(2);
PUSH_I64(sign_ext_16_64(LOAD_I16(maddr)));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD16_U)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(2);
PUSH_I64((uint64)(LOAD_U16(maddr)));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD32_S)
{
uint32 offset, flags, addr;
opcode = *(frame_ip - 1);
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(4);
PUSH_I64(sign_ext_32_64(LOAD_I32(maddr)));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LOAD32_U)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(4);
PUSH_I64((uint64)(LOAD_U32(maddr)));
CHECK_READ_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
/* memory store instructions */
HANDLE_OP(WASM_OP_I32_STORE)
HANDLE_OP(WASM_OP_F32_STORE)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
frame_sp--;
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(4);
STORE_U32(maddr, frame_sp[1]);
CHECK_WRITE_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_STORE)
HANDLE_OP(WASM_OP_F64_STORE)
{
uint32 offset, flags, addr;
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
frame_sp -= 2;
addr = POP_I32();
CHECK_MEMORY_OVERFLOW(8);
PUT_I64_TO_ADDR((uint32 *)maddr,
GET_I64_FROM_ADDR(frame_sp + 1));
CHECK_WRITE_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_STORE8)
HANDLE_OP(WASM_OP_I32_STORE16)
{
uint32 offset, flags, addr;
uint32 sval;
opcode = *(frame_ip - 1);
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
sval = (uint32)POP_I32();
addr = POP_I32();
if (opcode == WASM_OP_I32_STORE8) {
CHECK_MEMORY_OVERFLOW(1);
*(uint8 *)maddr = (uint8)sval;
}
else {
CHECK_MEMORY_OVERFLOW(2);
STORE_U16(maddr, (uint16)sval);
}
CHECK_WRITE_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_STORE8)
HANDLE_OP(WASM_OP_I64_STORE16)
HANDLE_OP(WASM_OP_I64_STORE32)
{
uint32 offset, flags, addr;
uint64 sval;
opcode = *(frame_ip - 1);
read_leb_uint32(frame_ip, frame_ip_end, flags);
read_leb_uint32(frame_ip, frame_ip_end, offset);
sval = (uint64)POP_I64();
addr = POP_I32();
if (opcode == WASM_OP_I64_STORE8) {
CHECK_MEMORY_OVERFLOW(1);
*(uint8 *)maddr = (uint8)sval;
}
else if (opcode == WASM_OP_I64_STORE16) {
CHECK_MEMORY_OVERFLOW(2);
STORE_U16(maddr, (uint16)sval);
}
else {
CHECK_MEMORY_OVERFLOW(4);
STORE_U32(maddr, (uint32)sval);
}
CHECK_WRITE_WATCHPOINT(addr, offset);
(void)flags;
HANDLE_OP_END();
}
/* memory size and memory grow instructions */
HANDLE_OP(WASM_OP_MEMORY_SIZE)
{
uint32 reserved;
read_leb_uint32(frame_ip, frame_ip_end, reserved);
PUSH_I32(memory->cur_page_count);
(void)reserved;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_MEMORY_GROW)
{
uint32 reserved, delta,
prev_page_count = memory->cur_page_count;
read_leb_uint32(frame_ip, frame_ip_end, reserved);
delta = (uint32)POP_I32();
if (!wasm_enlarge_memory(module, delta)) {
/* failed to memory.grow, return -1 */
PUSH_I32(-1);
}
else {
/* success, return previous page count */
PUSH_I32(prev_page_count);
/* update memory size, no need to update memory ptr as
it isn't changed in wasm_enlarge_memory */
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
linear_mem_size =
num_bytes_per_page * memory->cur_page_count;
#endif
}
(void)reserved;
HANDLE_OP_END();
}
/* constant instructions */
HANDLE_OP(WASM_OP_I32_CONST)
DEF_OP_I_CONST(int32, I32);
HANDLE_OP_END();
HANDLE_OP(WASM_OP_I64_CONST)
DEF_OP_I_CONST(int64, I64);
HANDLE_OP_END();
HANDLE_OP(WASM_OP_F32_CONST)
{
uint8 *p_float = (uint8 *)frame_sp++;
for (i = 0; i < sizeof(float32); i++)
*p_float++ = *frame_ip++;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONST)
{
uint8 *p_float = (uint8 *)frame_sp++;
frame_sp++;
for (i = 0; i < sizeof(float64); i++)
*p_float++ = *frame_ip++;
HANDLE_OP_END();
}
/* comparison instructions of i32 */
HANDLE_OP(WASM_OP_I32_EQZ)
{
DEF_OP_EQZ(I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_EQ)
{
DEF_OP_CMP(uint32, I32, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_NE)
{
DEF_OP_CMP(uint32, I32, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LT_S)
{
DEF_OP_CMP(int32, I32, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LT_U)
{
DEF_OP_CMP(uint32, I32, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GT_S)
{
DEF_OP_CMP(int32, I32, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GT_U)
{
DEF_OP_CMP(uint32, I32, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LE_S)
{
DEF_OP_CMP(int32, I32, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_LE_U)
{
DEF_OP_CMP(uint32, I32, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GE_S)
{
DEF_OP_CMP(int32, I32, >=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_GE_U)
{
DEF_OP_CMP(uint32, I32, >=);
HANDLE_OP_END();
}
/* comparison instructions of i64 */
HANDLE_OP(WASM_OP_I64_EQZ)
{
DEF_OP_EQZ(I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EQ)
{
DEF_OP_CMP(uint64, I64, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_NE)
{
DEF_OP_CMP(uint64, I64, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LT_S)
{
DEF_OP_CMP(int64, I64, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LT_U)
{
DEF_OP_CMP(uint64, I64, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GT_S)
{
DEF_OP_CMP(int64, I64, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GT_U)
{
DEF_OP_CMP(uint64, I64, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LE_S)
{
DEF_OP_CMP(int64, I64, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_LE_U)
{
DEF_OP_CMP(uint64, I64, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GE_S)
{
DEF_OP_CMP(int64, I64, >=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_GE_U)
{
DEF_OP_CMP(uint64, I64, >=);
HANDLE_OP_END();
}
/* comparison instructions of f32 */
HANDLE_OP(WASM_OP_F32_EQ)
{
DEF_OP_CMP(float32, F32, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_NE)
{
DEF_OP_CMP(float32, F32, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_LT)
{
DEF_OP_CMP(float32, F32, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_GT)
{
DEF_OP_CMP(float32, F32, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_LE)
{
DEF_OP_CMP(float32, F32, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_GE)
{
DEF_OP_CMP(float32, F32, >=);
HANDLE_OP_END();
}
/* comparison instructions of f64 */
HANDLE_OP(WASM_OP_F64_EQ)
{
DEF_OP_CMP(float64, F64, ==);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_NE)
{
DEF_OP_CMP(float64, F64, !=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_LT)
{
DEF_OP_CMP(float64, F64, <);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_GT)
{
DEF_OP_CMP(float64, F64, >);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_LE)
{
DEF_OP_CMP(float64, F64, <=);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_GE)
{
DEF_OP_CMP(float64, F64, >=);
HANDLE_OP_END();
}
/* numberic instructions of i32 */
HANDLE_OP(WASM_OP_I32_CLZ)
{
DEF_OP_BIT_COUNT(uint32, I32, clz32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_CTZ)
{
DEF_OP_BIT_COUNT(uint32, I32, ctz32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_POPCNT)
{
DEF_OP_BIT_COUNT(uint32, I32, popcount32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_ADD)
{
DEF_OP_NUMERIC(uint32, uint32, I32, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SUB)
{
DEF_OP_NUMERIC(uint32, uint32, I32, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_MUL)
{
DEF_OP_NUMERIC(uint32, uint32, I32, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_DIV_S)
{
int32 a, b;
b = POP_I32();
a = POP_I32();
if (a == (int32)0x80000000 && b == -1) {
wasm_set_exception(module, "integer overflow");
goto got_exception;
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I32(a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_DIV_U)
{
uint32 a, b;
b = (uint32)POP_I32();
a = (uint32)POP_I32();
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I32(a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_REM_S)
{
int32 a, b;
b = POP_I32();
a = POP_I32();
if (a == (int32)0x80000000 && b == -1) {
PUSH_I32(0);
HANDLE_OP_END();
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I32(a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_REM_U)
{
uint32 a, b;
b = (uint32)POP_I32();
a = (uint32)POP_I32();
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I32(a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_AND)
{
DEF_OP_NUMERIC(uint32, uint32, I32, &);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_OR)
{
DEF_OP_NUMERIC(uint32, uint32, I32, |);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_XOR)
{
DEF_OP_NUMERIC(uint32, uint32, I32, ^);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SHL)
{
DEF_OP_NUMERIC2(uint32, uint32, I32, <<);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SHR_S)
{
DEF_OP_NUMERIC2(int32, uint32, I32, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_SHR_U)
{
DEF_OP_NUMERIC2(uint32, uint32, I32, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_ROTL)
{
uint32 a, b;
b = (uint32)POP_I32();
a = (uint32)POP_I32();
PUSH_I32(rotl32(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_ROTR)
{
uint32 a, b;
b = (uint32)POP_I32();
a = (uint32)POP_I32();
PUSH_I32(rotr32(a, b));
HANDLE_OP_END();
}
/* numberic instructions of i64 */
HANDLE_OP(WASM_OP_I64_CLZ)
{
DEF_OP_BIT_COUNT(uint64, I64, clz64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_CTZ)
{
DEF_OP_BIT_COUNT(uint64, I64, ctz64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_POPCNT)
{
DEF_OP_BIT_COUNT(uint64, I64, popcount64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_ADD)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SUB)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_MUL)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_DIV_S)
{
int64 a, b;
b = POP_I64();
a = POP_I64();
if (a == (int64)0x8000000000000000LL && b == -1) {
wasm_set_exception(module, "integer overflow");
goto got_exception;
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I64(a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_DIV_U)
{
uint64 a, b;
b = (uint64)POP_I64();
a = (uint64)POP_I64();
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I64(a / b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_REM_S)
{
int64 a, b;
b = POP_I64();
a = POP_I64();
if (a == (int64)0x8000000000000000LL && b == -1) {
PUSH_I64(0);
HANDLE_OP_END();
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I64(a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_REM_U)
{
uint64 a, b;
b = (uint64)POP_I64();
a = (uint64)POP_I64();
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
PUSH_I64(a % b);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_AND)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, &);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_OR)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, |);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_XOR)
{
DEF_OP_NUMERIC_64(uint64, uint64, I64, ^);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SHL)
{
DEF_OP_NUMERIC2_64(uint64, uint64, I64, <<);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SHR_S)
{
DEF_OP_NUMERIC2_64(int64, uint64, I64, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_SHR_U)
{
DEF_OP_NUMERIC2_64(uint64, uint64, I64, >>);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_ROTL)
{
uint64 a, b;
b = (uint64)POP_I64();
a = (uint64)POP_I64();
PUSH_I64(rotl64(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_ROTR)
{
uint64 a, b;
b = (uint64)POP_I64();
a = (uint64)POP_I64();
PUSH_I64(rotr64(a, b));
HANDLE_OP_END();
}
/* numberic instructions of f32 */
HANDLE_OP(WASM_OP_F32_ABS)
{
DEF_OP_MATH(float32, F32, fabsf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_NEG)
{
uint32 u32 = frame_sp[-1];
uint32 sign_bit = u32 & ((uint32)1 << 31);
if (sign_bit)
frame_sp[-1] = u32 & ~((uint32)1 << 31);
else
frame_sp[-1] = u32 | ((uint32)1 << 31);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CEIL)
{
DEF_OP_MATH(float32, F32, ceilf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_FLOOR)
{
DEF_OP_MATH(float32, F32, floorf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_TRUNC)
{
DEF_OP_MATH(float32, F32, truncf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_NEAREST)
{
DEF_OP_MATH(float32, F32, rintf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_SQRT)
{
DEF_OP_MATH(float32, F32, sqrtf);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_ADD)
{
DEF_OP_NUMERIC(float32, float32, F32, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_SUB)
{
DEF_OP_NUMERIC(float32, float32, F32, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_MUL)
{
DEF_OP_NUMERIC(float32, float32, F32, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_DIV)
{
DEF_OP_NUMERIC(float32, float32, F32, /);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_MIN)
{
float32 a, b;
b = POP_F32();
a = POP_F32();
PUSH_F32(f32_min(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_MAX)
{
float32 a, b;
b = POP_F32();
a = POP_F32();
PUSH_F32(f32_max(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_COPYSIGN)
{
float32 a, b;
b = POP_F32();
a = POP_F32();
PUSH_F32(local_copysignf(a, b));
HANDLE_OP_END();
}
/* numberic instructions of f64 */
HANDLE_OP(WASM_OP_F64_ABS)
{
DEF_OP_MATH(float64, F64, fabs);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_NEG)
{
uint64 u64 = GET_I64_FROM_ADDR(frame_sp - 2);
uint64 sign_bit = u64 & (((uint64)1) << 63);
if (sign_bit)
PUT_I64_TO_ADDR(frame_sp - 2, (u64 & ~(((uint64)1) << 63)));
else
PUT_I64_TO_ADDR(frame_sp - 2, (u64 | (((uint64)1) << 63)));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CEIL)
{
DEF_OP_MATH(float64, F64, ceil);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_FLOOR)
{
DEF_OP_MATH(float64, F64, floor);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_TRUNC)
{
DEF_OP_MATH(float64, F64, trunc);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_NEAREST)
{
DEF_OP_MATH(float64, F64, rint);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_SQRT)
{
DEF_OP_MATH(float64, F64, sqrt);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_ADD)
{
DEF_OP_NUMERIC_64(float64, float64, F64, +);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_SUB)
{
DEF_OP_NUMERIC_64(float64, float64, F64, -);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_MUL)
{
DEF_OP_NUMERIC_64(float64, float64, F64, *);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_DIV)
{
DEF_OP_NUMERIC_64(float64, float64, F64, /);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_MIN)
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(f64_min(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_MAX)
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(f64_max(a, b));
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_COPYSIGN)
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(local_copysign(a, b));
HANDLE_OP_END();
}
/* conversions of i32 */
HANDLE_OP(WASM_OP_I32_WRAP_I64)
{
int32 value = (int32)(POP_I64() & 0xFFFFFFFFLL);
PUSH_I32(value);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_S_F32)
{
/* We don't use INT32_MIN/INT32_MAX/UINT32_MIN/UINT32_MAX,
since float/double values of ieee754 cannot precisely
represent all int32/uint32/int64/uint64 values, e.g.
UINT32_MAX is 4294967295, but (float32)4294967295 is
4294967296.0f, but not 4294967295.0f. */
DEF_OP_TRUNC_F32(-2147483904.0f, 2147483648.0f, true, true);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_U_F32)
{
DEF_OP_TRUNC_F32(-1.0f, 4294967296.0f, true, false);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_S_F64)
{
DEF_OP_TRUNC_F64(-2147483649.0, 2147483648.0, true, true);
/* frame_sp can't be moved in trunc function, we need to
manually adjust it if src and dst op's cell num is
different */
frame_sp--;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_TRUNC_U_F64)
{
DEF_OP_TRUNC_F64(-1.0, 4294967296.0, true, false);
frame_sp--;
HANDLE_OP_END();
}
/* conversions of i64 */
HANDLE_OP(WASM_OP_I64_EXTEND_S_I32)
{
DEF_OP_CONVERT(int64, I64, int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND_U_I32)
{
DEF_OP_CONVERT(int64, I64, uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_S_F32)
{
DEF_OP_TRUNC_F32(-9223373136366403584.0f,
9223372036854775808.0f, false, true);
frame_sp++;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_U_F32)
{
DEF_OP_TRUNC_F32(-1.0f, 18446744073709551616.0f, false, false);
frame_sp++;
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_S_F64)
{
DEF_OP_TRUNC_F64(-9223372036854777856.0, 9223372036854775808.0,
false, true);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_TRUNC_U_F64)
{
DEF_OP_TRUNC_F64(-1.0, 18446744073709551616.0, false, false);
HANDLE_OP_END();
}
/* conversions of f32 */
HANDLE_OP(WASM_OP_F32_CONVERT_S_I32)
{
DEF_OP_CONVERT(float32, F32, int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONVERT_U_I32)
{
DEF_OP_CONVERT(float32, F32, uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONVERT_S_I64)
{
DEF_OP_CONVERT(float32, F32, int64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_CONVERT_U_I64)
{
DEF_OP_CONVERT(float32, F32, uint64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F32_DEMOTE_F64)
{
DEF_OP_CONVERT(float32, F32, float64, F64);
HANDLE_OP_END();
}
/* conversions of f64 */
HANDLE_OP(WASM_OP_F64_CONVERT_S_I32)
{
DEF_OP_CONVERT(float64, F64, int32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONVERT_U_I32)
{
DEF_OP_CONVERT(float64, F64, uint32, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONVERT_S_I64)
{
DEF_OP_CONVERT(float64, F64, int64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_CONVERT_U_I64)
{
DEF_OP_CONVERT(float64, F64, uint64, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_F64_PROMOTE_F32)
{
DEF_OP_CONVERT(float64, F64, float32, F32);
HANDLE_OP_END();
}
/* reinterpretations */
HANDLE_OP(WASM_OP_I32_REINTERPRET_F32)
HANDLE_OP(WASM_OP_I64_REINTERPRET_F64)
HANDLE_OP(WASM_OP_F32_REINTERPRET_I32)
HANDLE_OP(WASM_OP_F64_REINTERPRET_I64) { HANDLE_OP_END(); }
HANDLE_OP(WASM_OP_I32_EXTEND8_S)
{
DEF_OP_CONVERT(int32, I32, int8, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I32_EXTEND16_S)
{
DEF_OP_CONVERT(int32, I32, int16, I32);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND8_S)
{
DEF_OP_CONVERT(int64, I64, int8, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND16_S)
{
DEF_OP_CONVERT(int64, I64, int16, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_I64_EXTEND32_S)
{
DEF_OP_CONVERT(int64, I64, int32, I64);
HANDLE_OP_END();
}
HANDLE_OP(WASM_OP_MISC_PREFIX)
{
uint32 opcode1;
read_leb_uint32(frame_ip, frame_ip_end, opcode1);
opcode = (uint8)opcode1;
switch (opcode) {
case WASM_OP_I32_TRUNC_SAT_S_F32:
DEF_OP_TRUNC_SAT_F32(-2147483904.0f, 2147483648.0f,
true, true);
break;
case WASM_OP_I32_TRUNC_SAT_U_F32:
DEF_OP_TRUNC_SAT_F32(-1.0f, 4294967296.0f, true, false);
break;
case WASM_OP_I32_TRUNC_SAT_S_F64:
DEF_OP_TRUNC_SAT_F64(-2147483649.0, 2147483648.0, true,
true);
frame_sp--;
break;
case WASM_OP_I32_TRUNC_SAT_U_F64:
DEF_OP_TRUNC_SAT_F64(-1.0, 4294967296.0, true, false);
frame_sp--;
break;
case WASM_OP_I64_TRUNC_SAT_S_F32:
DEF_OP_TRUNC_SAT_F32(-9223373136366403584.0f,
9223372036854775808.0f, false,
true);
frame_sp++;
break;
case WASM_OP_I64_TRUNC_SAT_U_F32:
DEF_OP_TRUNC_SAT_F32(-1.0f, 18446744073709551616.0f,
false, false);
frame_sp++;
break;
case WASM_OP_I64_TRUNC_SAT_S_F64:
DEF_OP_TRUNC_SAT_F64(-9223372036854777856.0,
9223372036854775808.0, false,
true);
break;
case WASM_OP_I64_TRUNC_SAT_U_F64:
DEF_OP_TRUNC_SAT_F64(-1.0f, 18446744073709551616.0,
false, false);
break;
#if WASM_ENABLE_BULK_MEMORY != 0
case WASM_OP_MEMORY_INIT:
{
uint32 addr, segment;
uint64 bytes, offset, seg_len;
uint8 *data;
read_leb_uint32(frame_ip, frame_ip_end, segment);
/* skip memory index */
frame_ip++;
bytes = (uint64)(uint32)POP_I32();
offset = (uint64)(uint32)POP_I32();
addr = (uint32)POP_I32();
#ifndef OS_ENABLE_HW_BOUND_CHECK
CHECK_BULK_MEMORY_OVERFLOW(addr, bytes, maddr);
#else
if ((uint64)(uint32)addr + bytes
> (uint64)linear_mem_size)
goto out_of_bounds;
maddr = memory->memory_data + (uint32)addr;
#endif
seg_len = (uint64)module->module->data_segments[segment]
->data_length;
data = module->module->data_segments[segment]->data;
if (offset + bytes > seg_len)
goto out_of_bounds;
bh_memcpy_s(maddr, linear_mem_size - addr,
data + offset, (uint32)bytes);
break;
}
case WASM_OP_DATA_DROP:
{
uint32 segment;
read_leb_uint32(frame_ip, frame_ip_end, segment);
module->module->data_segments[segment]->data_length = 0;
break;
}
case WASM_OP_MEMORY_COPY:
{
uint32 dst, src, len;
uint8 *mdst, *msrc;
frame_ip += 2;
len = POP_I32();
src = POP_I32();
dst = POP_I32();
#ifndef OS_ENABLE_HW_BOUND_CHECK
CHECK_BULK_MEMORY_OVERFLOW(src, len, msrc);
CHECK_BULK_MEMORY_OVERFLOW(dst, len, mdst);
#else
if ((uint64)(uint32)src + len > (uint64)linear_mem_size)
goto out_of_bounds;
msrc = memory->memory_data + (uint32)src;
if ((uint64)(uint32)dst + len > (uint64)linear_mem_size)
goto out_of_bounds;
mdst = memory->memory_data + (uint32)dst;
#endif
/* allowing the destination and source to overlap */
bh_memmove_s(mdst, linear_mem_size - dst, msrc, len);
break;
}
case WASM_OP_MEMORY_FILL:
{
uint32 dst, len;
uint8 fill_val, *mdst;
frame_ip++;
len = POP_I32();
fill_val = POP_I32();
dst = POP_I32();
#ifndef OS_ENABLE_HW_BOUND_CHECK
CHECK_BULK_MEMORY_OVERFLOW(dst, len, mdst);
#else
if ((uint64)(uint32)dst + len > (uint64)linear_mem_size)
goto out_of_bounds;
mdst = memory->memory_data + (uint32)dst;
#endif
memset(mdst, fill_val, len);
break;
}
#endif /* WASM_ENABLE_BULK_MEMORY */
#if WASM_ENABLE_REF_TYPES != 0
case WASM_OP_TABLE_INIT:
{
uint32 tbl_idx, elem_idx;
uint64 n, s, d;
WASMTableInstance *tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, elem_idx);
bh_assert(elem_idx < module->module->table_seg_count);
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
n = (uint32)POP_I32();
s = (uint32)POP_I32();
d = (uint32)POP_I32();
/* TODO: what if the element is not passive? */
if (!n) {
break;
}
if (n + s > module->module->table_segments[elem_idx]
.function_count
|| d + n > tbl_inst->cur_size) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
if (module->module->table_segments[elem_idx]
.is_dropped) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
if (!wasm_elem_is_passive(
module->module->table_segments[elem_idx]
.mode)) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
bh_memcpy_s(
(uint8 *)tbl_inst
+ offsetof(WASMTableInstance, elems)
+ d * sizeof(uint32),
(uint32)((tbl_inst->cur_size - d) * sizeof(uint32)),
module->module->table_segments[elem_idx]
.func_indexes
+ s,
(uint32)(n * sizeof(uint32)));
break;
}
case WASM_OP_ELEM_DROP:
{
uint32 elem_idx;
read_leb_uint32(frame_ip, frame_ip_end, elem_idx);
bh_assert(elem_idx < module->module->table_seg_count);
module->module->table_segments[elem_idx].is_dropped =
true;
break;
}
case WASM_OP_TABLE_COPY:
{
uint32 src_tbl_idx, dst_tbl_idx;
uint64 n, s, d;
WASMTableInstance *src_tbl_inst, *dst_tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, dst_tbl_idx);
bh_assert(dst_tbl_idx < module->table_count);
dst_tbl_inst = wasm_get_table_inst(module, dst_tbl_idx);
read_leb_uint32(frame_ip, frame_ip_end, src_tbl_idx);
bh_assert(src_tbl_idx < module->table_count);
src_tbl_inst = wasm_get_table_inst(module, src_tbl_idx);
n = (uint32)POP_I32();
s = (uint32)POP_I32();
d = (uint32)POP_I32();
if (d + n > dst_tbl_inst->cur_size
|| s + n > src_tbl_inst->cur_size) {
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
/* if s >= d, copy from front to back */
/* if s < d, copy from back to front */
/* merge all together */
bh_memmove_s((uint8 *)dst_tbl_inst
+ offsetof(WASMTableInstance, elems)
+ d * sizeof(uint32),
(uint32)((dst_tbl_inst->cur_size - d)
* sizeof(uint32)),
(uint8 *)src_tbl_inst
+ offsetof(WASMTableInstance, elems)
+ s * sizeof(uint32),
(uint32)(n * sizeof(uint32)));
break;
}
case WASM_OP_TABLE_GROW:
{
uint32 tbl_idx, n, init_val, orig_tbl_sz;
WASMTableInstance *tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
orig_tbl_sz = tbl_inst->cur_size;
n = POP_I32();
init_val = POP_I32();
if (!wasm_enlarge_table(module, tbl_idx, n, init_val)) {
PUSH_I32(-1);
}
else {
PUSH_I32(orig_tbl_sz);
}
break;
}
case WASM_OP_TABLE_SIZE:
{
uint32 tbl_idx;
WASMTableInstance *tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
PUSH_I32(tbl_inst->cur_size);
break;
}
case WASM_OP_TABLE_FILL:
{
uint32 tbl_idx, n, fill_val;
WASMTableInstance *tbl_inst;
read_leb_uint32(frame_ip, frame_ip_end, tbl_idx);
bh_assert(tbl_idx < module->table_count);
tbl_inst = wasm_get_table_inst(module, tbl_idx);
n = POP_I32();
fill_val = POP_I32();
i = POP_I32();
/* TODO: what if the element is not passive? */
/* TODO: what if the element is dropped? */
if (i + n > tbl_inst->cur_size) {
/* TODO: verify warning content */
wasm_set_exception(module,
"out of bounds table access");
goto got_exception;
}
for (; n != 0; i++, n--) {
tbl_inst->elems[i] = fill_val;
}
break;
}
#endif /* WASM_ENABLE_REF_TYPES */
default:
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
HANDLE_OP_END();
}
#if WASM_ENABLE_SHARED_MEMORY != 0
HANDLE_OP(WASM_OP_ATOMIC_PREFIX)
{
uint32 offset = 0, align, addr;
opcode = *frame_ip++;
if (opcode != WASM_OP_ATOMIC_FENCE) {
read_leb_uint32(frame_ip, frame_ip_end, align);
read_leb_uint32(frame_ip, frame_ip_end, offset);
}
switch (opcode) {
case WASM_OP_ATOMIC_NOTIFY:
{
uint32 notify_count, ret;
notify_count = POP_I32();
addr = POP_I32();
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
ret = wasm_runtime_atomic_notify(
(WASMModuleInstanceCommon *)module, maddr,
notify_count);
bh_assert((int32)ret >= 0);
PUSH_I32(ret);
break;
}
case WASM_OP_ATOMIC_WAIT32:
{
uint64 timeout;
uint32 expect, ret;
timeout = POP_I64();
expect = POP_I32();
addr = POP_I32();
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
ret = wasm_runtime_atomic_wait(
(WASMModuleInstanceCommon *)module, maddr,
(uint64)expect, timeout, false);
if (ret == (uint32)-1)
goto got_exception;
PUSH_I32(ret);
break;
}
case WASM_OP_ATOMIC_WAIT64:
{
uint64 timeout, expect;
uint32 ret;
timeout = POP_I64();
expect = POP_I64();
addr = POP_I32();
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 8, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
ret = wasm_runtime_atomic_wait(
(WASMModuleInstanceCommon *)module, maddr, expect,
timeout, true);
if (ret == (uint32)-1)
goto got_exception;
PUSH_I32(ret);
break;
}
case WASM_OP_ATOMIC_FENCE:
{
/* Skip the memory index */
frame_ip++;
break;
}
case WASM_OP_ATOMIC_I32_LOAD:
case WASM_OP_ATOMIC_I32_LOAD8_U:
case WASM_OP_ATOMIC_I32_LOAD16_U:
{
uint32 readv;
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I32_LOAD8_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = (uint32)(*(uint8 *)maddr);
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_I32_LOAD16_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = (uint32)LOAD_U16(maddr);
os_mutex_unlock(&module->e->mem_lock);
}
else {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = LOAD_I32(maddr);
os_mutex_unlock(&module->e->mem_lock);
}
PUSH_I32(readv);
break;
}
case WASM_OP_ATOMIC_I64_LOAD:
case WASM_OP_ATOMIC_I64_LOAD8_U:
case WASM_OP_ATOMIC_I64_LOAD16_U:
case WASM_OP_ATOMIC_I64_LOAD32_U:
{
uint64 readv;
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I64_LOAD8_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)(*(uint8 *)maddr);
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_I64_LOAD16_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)LOAD_U16(maddr);
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_I64_LOAD32_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)LOAD_U32(maddr);
os_mutex_unlock(&module->e->mem_lock);
}
else {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 8, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = LOAD_I64(maddr);
os_mutex_unlock(&module->e->mem_lock);
}
PUSH_I64(readv);
break;
}
case WASM_OP_ATOMIC_I32_STORE:
case WASM_OP_ATOMIC_I32_STORE8:
case WASM_OP_ATOMIC_I32_STORE16:
{
uint32 sval;
sval = (uint32)POP_I32();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I32_STORE8) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
*(uint8 *)maddr = (uint8)sval;
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_I32_STORE16) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
STORE_U16(maddr, (uint16)sval);
os_mutex_unlock(&module->e->mem_lock);
}
else {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
STORE_U32(maddr, frame_sp[1]);
os_mutex_unlock(&module->e->mem_lock);
}
break;
}
case WASM_OP_ATOMIC_I64_STORE:
case WASM_OP_ATOMIC_I64_STORE8:
case WASM_OP_ATOMIC_I64_STORE16:
case WASM_OP_ATOMIC_I64_STORE32:
{
uint64 sval;
sval = (uint64)POP_I64();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_I64_STORE8) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
*(uint8 *)maddr = (uint8)sval;
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_I64_STORE16) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
STORE_U16(maddr, (uint16)sval);
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_I64_STORE32) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
STORE_U32(maddr, (uint32)sval);
os_mutex_unlock(&module->e->mem_lock);
}
else {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 8, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
PUT_I64_TO_ADDR((uint32 *)maddr,
GET_I64_FROM_ADDR(frame_sp + 1));
os_mutex_unlock(&module->e->mem_lock);
}
break;
}
case WASM_OP_ATOMIC_RMW_I32_CMPXCHG:
case WASM_OP_ATOMIC_RMW_I32_CMPXCHG8_U:
case WASM_OP_ATOMIC_RMW_I32_CMPXCHG16_U:
{
uint32 readv, sval, expect;
sval = POP_I32();
expect = POP_I32();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_RMW_I32_CMPXCHG8_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
expect = (uint8)expect;
os_mutex_lock(&module->e->mem_lock);
readv = (uint32)(*(uint8 *)maddr);
if (readv == expect)
*(uint8 *)maddr = (uint8)(sval);
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_RMW_I32_CMPXCHG16_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
expect = (uint16)expect;
os_mutex_lock(&module->e->mem_lock);
readv = (uint32)LOAD_U16(maddr);
if (readv == expect)
STORE_U16(maddr, (uint16)(sval));
os_mutex_unlock(&module->e->mem_lock);
}
else {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = LOAD_I32(maddr);
if (readv == expect)
STORE_U32(maddr, sval);
os_mutex_unlock(&module->e->mem_lock);
}
PUSH_I32(readv);
break;
}
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG:
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG8_U:
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG16_U:
case WASM_OP_ATOMIC_RMW_I64_CMPXCHG32_U:
{
uint64 readv, sval, expect;
sval = (uint64)POP_I64();
expect = (uint64)POP_I64();
addr = POP_I32();
if (opcode == WASM_OP_ATOMIC_RMW_I64_CMPXCHG8_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 1, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
expect = (uint8)expect;
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)(*(uint8 *)maddr);
if (readv == expect)
*(uint8 *)maddr = (uint8)(sval);
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_RMW_I64_CMPXCHG16_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 2, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
expect = (uint16)expect;
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)LOAD_U16(maddr);
if (readv == expect)
STORE_U16(maddr, (uint16)(sval));
os_mutex_unlock(&module->e->mem_lock);
}
else if (opcode == WASM_OP_ATOMIC_RMW_I64_CMPXCHG32_U) {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 4, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
expect = (uint32)expect;
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)LOAD_U32(maddr);
if (readv == expect)
STORE_U32(maddr, (uint32)(sval));
os_mutex_unlock(&module->e->mem_lock);
}
else {
CHECK_BULK_MEMORY_OVERFLOW(addr + offset, 8, maddr);
CHECK_ATOMIC_MEMORY_ACCESS();
os_mutex_lock(&module->e->mem_lock);
readv = (uint64)LOAD_I64(maddr);
if (readv == expect) {
STORE_I64(maddr, sval);
}
os_mutex_unlock(&module->e->mem_lock);
}
PUSH_I64(readv);
break;
}
DEF_ATOMIC_RMW_OPCODE(ADD, +);
DEF_ATOMIC_RMW_OPCODE(SUB, -);
DEF_ATOMIC_RMW_OPCODE(AND, &);
DEF_ATOMIC_RMW_OPCODE(OR, |);
DEF_ATOMIC_RMW_OPCODE(XOR, ^);
/* xchg, ignore the read value, and store the given
value: readv * 0 + sval */
DEF_ATOMIC_RMW_OPCODE(XCHG, *0 +);
}
HANDLE_OP_END();
}
#endif
HANDLE_OP(WASM_OP_IMPDEP)
{
frame = prev_frame;
frame_ip = frame->ip;
frame_sp = frame->sp;
frame_csp = frame->csp;
goto call_func_from_entry;
}
#if WASM_ENABLE_DEBUG_INTERP != 0
HANDLE_OP(DEBUG_OP_BREAK)
{
wasm_cluster_thread_send_signal(exec_env, WAMR_SIG_TRAP);
exec_env->suspend_flags.flags |= 2;
frame_ip--;
SYNC_ALL_TO_FRAME();
CHECK_SUSPEND_FLAGS();
HANDLE_OP_END();
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES == 0
default:
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES != 0
HANDLE_OP(WASM_OP_UNUSED_0x06)
HANDLE_OP(WASM_OP_UNUSED_0x07)
HANDLE_OP(WASM_OP_UNUSED_0x08)
HANDLE_OP(WASM_OP_UNUSED_0x09)
HANDLE_OP(WASM_OP_UNUSED_0x0a)
#if WASM_ENABLE_TAIL_CALL == 0
HANDLE_OP(WASM_OP_RETURN_CALL)
HANDLE_OP(WASM_OP_RETURN_CALL_INDIRECT)
#endif
#if WASM_ENABLE_SHARED_MEMORY == 0
HANDLE_OP(WASM_OP_ATOMIC_PREFIX)
#endif
#if WASM_ENABLE_REF_TYPES == 0
HANDLE_OP(WASM_OP_SELECT_T)
HANDLE_OP(WASM_OP_TABLE_GET)
HANDLE_OP(WASM_OP_TABLE_SET)
HANDLE_OP(WASM_OP_REF_NULL)
HANDLE_OP(WASM_OP_REF_IS_NULL)
HANDLE_OP(WASM_OP_REF_FUNC)
#endif
HANDLE_OP(WASM_OP_UNUSED_0x14)
HANDLE_OP(WASM_OP_UNUSED_0x15)
HANDLE_OP(WASM_OP_UNUSED_0x16)
HANDLE_OP(WASM_OP_UNUSED_0x17)
HANDLE_OP(WASM_OP_UNUSED_0x18)
HANDLE_OP(WASM_OP_UNUSED_0x19)
HANDLE_OP(WASM_OP_UNUSED_0x27)
/* Used by fast interpreter */
HANDLE_OP(EXT_OP_SET_LOCAL_FAST_I64)
HANDLE_OP(EXT_OP_TEE_LOCAL_FAST_I64)
HANDLE_OP(EXT_OP_COPY_STACK_TOP)
HANDLE_OP(EXT_OP_COPY_STACK_TOP_I64)
HANDLE_OP(EXT_OP_COPY_STACK_VALUES)
{
wasm_set_exception(module, "unsupported opcode");
goto got_exception;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES == 0
continue;
#else
FETCH_OPCODE_AND_DISPATCH();
#endif
#if WASM_ENABLE_TAIL_CALL != 0
call_func_from_return_call:
{
POP(cur_func->param_cell_num);
if (cur_func->param_cell_num > 0) {
word_copy(frame->lp, frame_sp, cur_func->param_cell_num);
}
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
goto call_func_from_entry;
}
#endif
call_func_from_interp:
{
/* Only do the copy when it's called from interpreter. */
WASMInterpFrame *outs_area = wasm_exec_env_wasm_stack_top(exec_env);
POP(cur_func->param_cell_num);
SYNC_ALL_TO_FRAME();
if (cur_func->param_cell_num > 0) {
word_copy(outs_area->lp, frame_sp, cur_func->param_cell_num);
}
prev_frame = frame;
}
call_func_from_entry:
{
if (cur_func->is_import_func) {
#if WASM_ENABLE_MULTI_MODULE != 0
if (cur_func->import_func_inst) {
wasm_interp_call_func_import(module, exec_env, cur_func,
prev_frame);
}
else
#endif
{
wasm_interp_call_func_native(module, exec_env, cur_func,
prev_frame);
}
prev_frame = frame->prev_frame;
cur_func = frame->function;
UPDATE_ALL_FROM_FRAME();
/* update memory size, no need to update memory ptr as
it isn't changed in wasm_enlarge_memory */
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
if (memory)
linear_mem_size = num_bytes_per_page * memory->cur_page_count;
#endif
if (wasm_get_exception(module))
goto got_exception;
}
else {
WASMFunction *cur_wasm_func = cur_func->u.func;
WASMType *func_type;
func_type = cur_wasm_func->func_type;
all_cell_num = cur_func->param_cell_num + cur_func->local_cell_num
+ cur_wasm_func->max_stack_cell_num
+ cur_wasm_func->max_block_num
* (uint32)sizeof(WASMBranchBlock) / 4;
/* param_cell_num, local_cell_num, max_stack_cell_num and
max_block_num are all no larger than UINT16_MAX (checked
in loader), all_cell_num must be smaller than 1MB */
bh_assert(all_cell_num < 1 * BH_MB);
frame_size = wasm_interp_interp_frame_size(all_cell_num);
if (!(frame = ALLOC_FRAME(exec_env, frame_size, prev_frame))) {
frame = prev_frame;
goto got_exception;
}
/* Initialize the interpreter context. */
frame->function = cur_func;
frame_ip = wasm_get_func_code(cur_func);
frame_ip_end = wasm_get_func_code_end(cur_func);
frame_lp = frame->lp;
frame_sp = frame->sp_bottom =
frame_lp + cur_func->param_cell_num + cur_func->local_cell_num;
frame->sp_boundary =
frame->sp_bottom + cur_wasm_func->max_stack_cell_num;
frame_csp = frame->csp_bottom =
(WASMBranchBlock *)frame->sp_boundary;
frame->csp_boundary =
frame->csp_bottom + cur_wasm_func->max_block_num;
/* Initialize the local variables */
memset(frame_lp + cur_func->param_cell_num, 0,
(uint32)(cur_func->local_cell_num * 4));
/* Push function block as first block */
cell_num = func_type->ret_cell_num;
PUSH_CSP(LABEL_TYPE_FUNCTION, 0, cell_num, frame_ip_end - 1);
wasm_exec_env_set_cur_frame(exec_env, frame);
#if WASM_ENABLE_THREAD_MGR != 0
CHECK_SUSPEND_FLAGS();
#endif
}
HANDLE_OP_END();
}
return_func:
{
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
if (!prev_frame->ip)
/* Called from native. */
return;
RECOVER_CONTEXT(prev_frame);
HANDLE_OP_END();
}
#if WASM_ENABLE_SHARED_MEMORY != 0
unaligned_atomic:
wasm_set_exception(module, "unaligned atomic");
goto got_exception;
#endif
#if !defined(OS_ENABLE_HW_BOUND_CHECK) \
|| WASM_CPU_SUPPORTS_UNALIGNED_ADDR_ACCESS == 0 \
|| WASM_ENABLE_BULK_MEMORY != 0
out_of_bounds:
wasm_set_exception(module, "out of bounds memory access");
#endif
got_exception:
#if WASM_ENABLE_DEBUG_INTERP != 0
if (wasm_exec_env_get_instance(exec_env) != NULL) {
uint8 *frame_ip_temp = frame_ip;
frame_ip = frame_ip_orig;
wasm_cluster_thread_send_signal(exec_env, WAMR_SIG_TRAP);
CHECK_SUSPEND_FLAGS();
frame_ip = frame_ip_temp;
}
#endif
SYNC_ALL_TO_FRAME();
return;
#if WASM_ENABLE_LABELS_AS_VALUES == 0
}
#else
FETCH_OPCODE_AND_DISPATCH();
#endif
}
#if WASM_ENABLE_FAST_JIT != 0
static void
fast_jit_call_func_bytecode(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *function,
WASMInterpFrame *frame)
{
JitGlobals *jit_globals = jit_compiler_get_jit_globals();
JitInterpSwitchInfo info;
WASMModule *module = module_inst->module;
WASMType *func_type = function->u.func->func_type;
uint8 type = func_type->result_count
? func_type->types[func_type->param_count]
: VALUE_TYPE_VOID;
uint32 func_idx = (uint32)(function - module_inst->e->functions);
uint32 func_idx_non_import = func_idx - module->import_function_count;
int32 action;
#if WASM_ENABLE_REF_TYPES != 0
if (type == VALUE_TYPE_EXTERNREF || type == VALUE_TYPE_FUNCREF)
type = VALUE_TYPE_I32;
#endif
#if WASM_ENABLE_LAZY_JIT != 0
if (!jit_compiler_compile(module, func_idx)) {
wasm_set_exception(module_inst, "failed to compile fast jit function");
return;
}
#endif
bh_assert(jit_compiler_is_compiled(module, func_idx));
/* Switch to jitted code to call the jit function */
info.out.ret.last_return_type = type;
info.frame = frame;
frame->jitted_return_addr =
(uint8 *)jit_globals->return_to_interp_from_jitted;
action = jit_interp_switch_to_jitted(
exec_env, &info, func_idx,
module_inst->fast_jit_func_ptrs[func_idx_non_import]);
bh_assert(action == JIT_INTERP_ACTION_NORMAL
|| (action == JIT_INTERP_ACTION_THROWN
&& wasm_runtime_get_exception(exec_env->module_inst)));
/* Get the return values form info.out.ret */
if (func_type->result_count) {
switch (type) {
case VALUE_TYPE_I32:
*(frame->sp - function->ret_cell_num) = info.out.ret.ival[0];
break;
case VALUE_TYPE_I64:
*(frame->sp - function->ret_cell_num) = info.out.ret.ival[0];
*(frame->sp - function->ret_cell_num + 1) =
info.out.ret.ival[1];
break;
case VALUE_TYPE_F32:
*(frame->sp - function->ret_cell_num) = info.out.ret.fval[0];
break;
case VALUE_TYPE_F64:
*(frame->sp - function->ret_cell_num) = info.out.ret.fval[0];
*(frame->sp - function->ret_cell_num + 1) =
info.out.ret.fval[1];
break;
default:
bh_assert(0);
break;
}
}
(void)action;
(void)func_idx;
}
#endif /* end of WASM_ENABLE_FAST_JIT != 0 */
#if WASM_ENABLE_JIT != 0
static bool
llvm_jit_call_func_bytecode(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *function, uint32 argc,
uint32 argv[])
{
WASMType *func_type = function->u.func->func_type;
uint32 result_count = func_type->result_count;
uint32 ext_ret_count = result_count > 1 ? result_count - 1 : 0;
uint32 func_idx = (uint32)(function - module_inst->e->functions);
bool ret;
#if (WASM_ENABLE_DUMP_CALL_STACK != 0) || (WASM_ENABLE_PERF_PROFILING != 0)
if (!llvm_jit_alloc_frame(exec_env, function - module_inst->e->functions)) {
/* wasm operand stack overflow has been thrown,
no need to throw again */
return false;
}
#endif
if (ext_ret_count > 0) {
uint32 cell_num = 0, i;
uint8 *ext_ret_types = func_type->types + func_type->param_count + 1;
uint32 argv1_buf[32], *argv1 = argv1_buf, *ext_rets = NULL;
uint32 *argv_ret = argv;
uint32 ext_ret_cell = wasm_get_cell_num(ext_ret_types, ext_ret_count);
uint64 size;
/* Allocate memory all arguments */
size =
sizeof(uint32) * (uint64)argc /* original arguments */
+ sizeof(void *)
* (uint64)ext_ret_count /* extra result values' addr */
+ sizeof(uint32) * (uint64)ext_ret_cell; /* extra result values */
if (size > sizeof(argv1_buf)) {
if (size > UINT32_MAX
|| !(argv1 = wasm_runtime_malloc((uint32)size))) {
wasm_set_exception(module_inst, "allocate memory failed");
return false;
}
}
/* Copy original arguments */
bh_memcpy_s(argv1, (uint32)size, argv, sizeof(uint32) * argc);
/* Get the extra result value's address */
ext_rets =
argv1 + argc + sizeof(void *) / sizeof(uint32) * ext_ret_count;
/* Append each extra result value's address to original arguments */
for (i = 0; i < ext_ret_count; i++) {
*(uintptr_t *)(argv1 + argc + sizeof(void *) / sizeof(uint32) * i) =
(uintptr_t)(ext_rets + cell_num);
cell_num += wasm_value_type_cell_num(ext_ret_types[i]);
}
ret = wasm_runtime_invoke_native(
exec_env, module_inst->func_ptrs[func_idx], func_type, NULL, NULL,
argv1, argc, argv);
if (!ret) {
if (argv1 != argv1_buf)
wasm_runtime_free(argv1);
return ret;
}
/* Get extra result values */
switch (func_type->types[func_type->param_count]) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
#if WASM_ENABLE_REF_TYPES != 0
case VALUE_TYPE_FUNCREF:
case VALUE_TYPE_EXTERNREF:
#endif
argv_ret++;
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
argv_ret += 2;
break;
#if WASM_ENABLE_SIMD != 0
case VALUE_TYPE_V128:
argv_ret += 4;
break;
#endif
default:
bh_assert(0);
break;
}
ext_rets =
argv1 + argc + sizeof(void *) / sizeof(uint32) * ext_ret_count;
bh_memcpy_s(argv_ret, sizeof(uint32) * cell_num, ext_rets,
sizeof(uint32) * cell_num);
if (argv1 != argv1_buf)
wasm_runtime_free(argv1);
return true;
}
else {
ret = wasm_runtime_invoke_native(
exec_env, module_inst->func_ptrs[func_idx], func_type, NULL, NULL,
argv, argc, argv);
return ret && !wasm_get_exception(module_inst) ? true : false;
}
}
#endif /* end of WASM_ENABLE_JIT != 0 */
void
wasm_interp_call_wasm(WASMModuleInstance *module_inst, WASMExecEnv *exec_env,
WASMFunctionInstance *function, uint32 argc,
uint32 argv[])
{
WASMRuntimeFrame *prev_frame = wasm_exec_env_get_cur_frame(exec_env);
WASMInterpFrame *frame, *outs_area;
/* Allocate sufficient cells for all kinds of return values. */
unsigned all_cell_num =
function->ret_cell_num > 2 ? function->ret_cell_num : 2;
/* This frame won't be used by JITed code, so only allocate interp
frame here. */
unsigned frame_size = wasm_interp_interp_frame_size(all_cell_num);
unsigned i;
bool copy_argv_from_frame = true;
if (argc < function->param_cell_num) {
char buf[128];
snprintf(buf, sizeof(buf),
"invalid argument count %" PRIu32
", must be no smaller than %u",
argc, function->param_cell_num);
wasm_set_exception(module_inst, buf);
return;
}
argc = function->param_cell_num;
RECORD_STACK_USAGE(exec_env, (uint8 *)&prev_frame);
#if !(defined(OS_ENABLE_HW_BOUND_CHECK) \
&& WASM_DISABLE_STACK_HW_BOUND_CHECK == 0)
if ((uint8 *)&prev_frame < exec_env->native_stack_boundary) {
wasm_set_exception((WASMModuleInstance *)exec_env->module_inst,
"native stack overflow");
return;
}
#endif
if (!(frame = ALLOC_FRAME(exec_env, frame_size, prev_frame)))
return;
outs_area = wasm_exec_env_wasm_stack_top(exec_env);
frame->function = NULL;
frame->ip = NULL;
/* There is no local variable. */
frame->sp = frame->lp + 0;
if ((uint8 *)(outs_area->lp + function->param_cell_num)
> exec_env->wasm_stack.s.top_boundary) {
wasm_set_exception(module_inst, "wasm operand stack overflow");
return;
}
if (argc > 0)
word_copy(outs_area->lp, argv, argc);
wasm_exec_env_set_cur_frame(exec_env, frame);
if (function->is_import_func) {
#if WASM_ENABLE_MULTI_MODULE != 0
if (function->import_module_inst) {
wasm_interp_call_func_import(module_inst, exec_env, function,
frame);
}
else
#endif
{
/* it is a native function */
wasm_interp_call_func_native(module_inst, exec_env, function,
frame);
}
}
else {
RunningMode running_mode =
wasm_runtime_get_running_mode((wasm_module_inst_t)module_inst);
if (running_mode == Mode_Interp) {
wasm_interp_call_func_bytecode(module_inst, exec_env, function,
frame);
}
#if WASM_ENABLE_FAST_JIT != 0
else if (running_mode == Mode_Fast_JIT) {
fast_jit_call_func_bytecode(module_inst, exec_env, function, frame);
}
#endif
#if WASM_ENABLE_JIT != 0
else if (running_mode == Mode_LLVM_JIT) {
llvm_jit_call_func_bytecode(module_inst, exec_env, function, argc,
argv);
/* For llvm jit, the results have been stored in argv,
no need to copy them from stack frame again */
copy_argv_from_frame = false;
}
#endif
#if WASM_ENABLE_LAZY_JIT != 0 && WASM_ENABLE_FAST_JIT != 0 \
&& WASM_ENABLE_JIT != 0
else if (running_mode == Mode_Multi_Tier_JIT) {
/* Tier-up from Fast JIT to LLVM JIT, call llvm jit function
if it is compiled, else call fast jit function */
uint32 func_idx = (uint32)(function - module_inst->e->functions);
if (module_inst->module->func_ptrs_compiled
[func_idx - module_inst->module->import_function_count]) {
llvm_jit_call_func_bytecode(module_inst, exec_env, function,
argc, argv);
/* For llvm jit, the results have been stored in argv,
no need to copy them from stack frame again */
copy_argv_from_frame = false;
}
else {
fast_jit_call_func_bytecode(module_inst, exec_env, function,
frame);
}
}
#endif
else {
/* There should always be a supported running mode selected */
bh_assert(0);
}
(void)wasm_interp_call_func_bytecode;
#if WASM_ENABLE_FAST_JIT != 0
(void)fast_jit_call_func_bytecode;
#endif
}
/* Output the return value to the caller */
if (!wasm_get_exception(module_inst)) {
if (copy_argv_from_frame) {
for (i = 0; i < function->ret_cell_num; i++) {
argv[i] = *(frame->sp + i - function->ret_cell_num);
}
}
}
else {
#if WASM_ENABLE_DUMP_CALL_STACK != 0
if (wasm_interp_create_call_stack(exec_env)) {
wasm_interp_dump_call_stack(exec_env, true, NULL, 0);
}
#endif
LOG_DEBUG("meet an exception %s", wasm_get_exception(module_inst));
}
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
FREE_FRAME(exec_env, frame);
}