This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/iwasm/fast-jit/jit_ir.h

1883 lines
52 KiB
C
Raw Normal View History

/*
* Copyright (C) 2021 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef _JIT_IR_H_
#define _JIT_IR_H_
#include "bh_platform.h"
#include "../interpreter/wasm.h"
#include "jit_utils.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Register (operand) representation of JIT IR.
*
* Encoding: [4-bit: kind, 28-bit register no.]
*
* Registers in JIT IR are classified into different kinds according
* to types of values they can hold. The classification is based on
* most processors' hardware register classifications, which include
* various sets of integer, floating point and vector registers with
* different sizes. These registers can be mapped onto corresponding
* kinds of hardware registers by register allocator. Instructions
* can only operate on allowed kinds of registers. For example, an
* integer instruction cannot operate on floating point or vector
* registers. Some encodings of these kinds of registers also
* represent immediate constant values and indexes to constant tables
* (see below). In that case, those registers are read-only. Writing
* to them is illegal. Reading from an immediate constant value
* register always returns the constant value encoded in the register
* no. Reading from a constant table index register always returns
* the constant value stored at the encoded index of the constant
* table of the register's kind. Immediate constant values and values
* indexed by constant table indexes can only be loaded into the
* corresponding kinds of registers if they must be loaded into
* registers. Besides these common kinds of registers, labels of
* basic blocks are also treated as registers of a special kind, which
* hold code addresses of basic block labels and are read-only. Each
* basic block is assigned one unique label register. With this
* unification, we can use the same set of load instructions to load
* values either from addresses stored in normal registers or from
* addresses of labels. Besides these register kinds, the void kind
* is a special kind of registers to denote some error occurs when a
* normal register is expected. Or it can be used as result operand
* of call and invoke instructions to denote no return values. The
* variable registers are classified into two sets: the hard registers
* whose register numbers are less than the hard register numbers of
* their kinds and the virtual registers whose register numbers are
* greater than or equal to the hard register numbers. Before
* register allocation is done, hard registers may appear in the IR
* due to special usages of passes frontend (e.g. fp_reg and exec_env_reg)
* or lower_cg. In the mean time (including during register
* allocation), those hard registers are treated same as virtual
* registers except that they may not be SSA and they can only be
* allocated to the hard registers of themselves.
*
* Classification of registers:
* + void register (kind == JIT_REG_KIND_VOID, no. must be 0)
* + label registers (kind == JIT_REG_KIND_L32)
* + value registers (kind == JIT_REG_KIND_I32/I64/F32/F64/V64/V128/V256)
* | + constants (_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG)
* | | + constant values (_JIT_REG_CONST_VAL_FLAG)
* | | + constant indexes (_JIT_REG_CONST_IDX_FLAG)
* | + variables (!(_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG))
* | | + hard registers (no. < hard register number)
* | | + virtual registers (no. >= hard register number)
*/
typedef uint32 JitReg;
/*
* Mask and shift bits of register kind.
*/
#define _JIT_REG_KIND_MASK 0xf0000000
#define _JIT_REG_KIND_SHIFT 28
/*
* Mask of register no. which must be the least significant bits.
*/
#define _JIT_REG_NO_MASK (~_JIT_REG_KIND_MASK)
/*
* Constant value flag (the most significant bit) of register
* no. field of integer, floating point and vector registers. If this
* flag is set in the register no., the rest bits of register
* no. represent a signed (27-bit) integer constant value of the
* corresponding type of the register and the register is read-only.
*/
#define _JIT_REG_CONST_VAL_FLAG ((_JIT_REG_NO_MASK >> 1) + 1)
/*
* Constant index flag of non-constant-value (constant value flag is
* not set in register no. field) integer, floating point and vector
* regisers. If this flag is set, the rest bits of the register
* no. represent an index to the constant value table of the
* corresponding type of the register and the register is read-only.
*/
#define _JIT_REG_CONST_IDX_FLAG (_JIT_REG_CONST_VAL_FLAG >> 1)
/**
* Register kinds. Don't change the order of the defined values. The
* L32 kind must be after all normal kinds (see _const_val and _reg_ann
* of JitCompContext).
*/
typedef enum JitRegKind {
JIT_REG_KIND_VOID = 0x00, /* void type */
JIT_REG_KIND_I32 = 0x01, /* 32-bit signed or unsigned integer */
JIT_REG_KIND_I64 = 0x02, /* 64-bit signed or unsigned integer */
JIT_REG_KIND_F32 = 0x03, /* 32-bit floating point */
JIT_REG_KIND_F64 = 0x04, /* 64-bit floating point */
JIT_REG_KIND_V64 = 0x05, /* 64-bit vector */
JIT_REG_KIND_V128 = 0x06, /* 128-bit vector */
JIT_REG_KIND_V256 = 0x07, /* 256-bit vector */
JIT_REG_KIND_L32 = 0x08, /* 32-bit label address */
JIT_REG_KIND_NUM /* number of register kinds */
} JitRegKind;
#if UINTPTR_MAX == UINT64_MAX
#define JIT_REG_KIND_PTR JIT_REG_KIND_I64
#else
#define JIT_REG_KIND_PTR JIT_REG_KIND_I32
#endif
/**
* Construct a new JIT IR register from the kind and no.
*
* @param reg_kind register kind
* @param reg_no register no.
*
* @return the new register with the given kind and no.
*/
static inline JitReg
jit_reg_new(unsigned reg_kind, unsigned reg_no)
{
return (JitReg)((reg_kind << _JIT_REG_KIND_SHIFT) | reg_no);
}
/**
* Get the register kind of the given register.
*
* @param r a JIT IR register
*
* @return the register kind of register r
*/
static inline int
jit_reg_kind(JitReg r)
{
return (r & _JIT_REG_KIND_MASK) >> _JIT_REG_KIND_SHIFT;
}
/**
* Get the register no. of the given JIT IR register.
*
* @param r a JIT IR register
*
* @return the register no. of register r
*/
static inline int
jit_reg_no(JitReg r)
{
return r & _JIT_REG_NO_MASK;
}
/**
* Check whether the given register is a normal value register.
*
* @param r a JIT IR register
*
* @return true iff the register is a normal value register
*/
static inline bool
jit_reg_is_value(JitReg r)
{
unsigned kind = jit_reg_kind(r);
return kind > JIT_REG_KIND_VOID && kind < JIT_REG_KIND_L32;
}
/**
* Check whether the given register is a constant value.
*
* @param r a JIT IR register
*
* @return true iff register r is a constant value
*/
static inline bool
jit_reg_is_const_val(JitReg r)
{
return jit_reg_is_value(r) && (r & _JIT_REG_CONST_VAL_FLAG);
}
/**
* Check whether the given register is a constant table index.
*
* @param r a JIT IR register
*
* @return true iff register r is a constant table index
*/
static inline bool
jit_reg_is_const_idx(JitReg r)
{
return (jit_reg_is_value(r) && !jit_reg_is_const_val(r)
&& (r & _JIT_REG_CONST_IDX_FLAG));
}
/**
* Check whether the given register is a constant.
*
* @param r a JIT IR register
*
* @return true iff register r is a constant
*/
static inline bool
jit_reg_is_const(JitReg r)
{
return (jit_reg_is_value(r)
&& (r & (_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG)));
}
/**
* Check whether the given register is a normal variable register.
*
* @param r a JIT IR register
*
* @return true iff the register is a normal variable register
*/
static inline bool
jit_reg_is_variable(JitReg r)
{
return (jit_reg_is_value(r)
&& !(r & (_JIT_REG_CONST_VAL_FLAG | _JIT_REG_CONST_IDX_FLAG)));
}
/**
* Test whether the register is the given kind.
*
* @param KIND register kind name
* @param R register
*
* @return true if the register is the given kind
*/
#define jit_reg_is_kind(KIND, R) (jit_reg_kind(R) == JIT_REG_KIND_##KIND)
/**
* Construct a zero IR register with given the kind.
*
* @param kind the kind of the value
*
* @return a constant register of zero
*/
static inline JitReg
jit_reg_new_zero(unsigned kind)
{
bh_assert(kind != JIT_REG_KIND_VOID && kind < JIT_REG_KIND_L32);
return jit_reg_new(kind, _JIT_REG_CONST_VAL_FLAG);
}
/**
* Test whether the register is a zero constant value.
*
* @param reg an IR register
*
* @return true iff the register is a constant zero
*/
static inline JitReg
jit_reg_is_zero(JitReg reg)
{
return (jit_reg_is_value(reg)
&& jit_reg_no(reg) == _JIT_REG_CONST_VAL_FLAG);
}
/**
* Operand of instructions with fixed-number register operand(s).
*/
typedef JitReg JitOpndReg;
/**
* Operand of instructions with variable-number register operand(s).
*/
typedef struct JitOpndVReg {
uint32 _reg_num;
JitReg _reg[1];
} JitOpndVReg;
/**
* Operand of lookupswitch instruction.
*/
typedef struct JitOpndLookupSwitch {
/* NOTE: distance between JitReg operands must be the same (see
jit_insn_opnd_regs). */
JitReg value; /* the value to be compared */
uint32 match_pairs_num; /* match pairs number */
/* NOTE: offset between adjacent targets must be sizeof
(match_pairs[0]) (see implementation of jit_basic_block_succs),
so the default_target field must be here. */
JitReg default_target; /* default target BB */
struct {
int32 value; /* match value of the match pair */
JitReg target; /* target BB of the match pair */
} match_pairs[1]; /* match pairs of the instruction */
} JitOpndLookupSwitch;
/**
* Instruction of JIT IR.
*/
typedef struct JitInsn {
/* Pointers to the previous and next instructions. */
struct JitInsn *prev;
struct JitInsn *next;
/* Opcode of the instruction. */
uint16 opcode;
/* Reserved field that may be used by optimizations locally. */
uint8 flags_u8;
/* The unique ID of the instruction. */
uint16 uid;
/* Operands for different kinds of instructions. */
union {
/* For instructions with fixed-number register operand(s). */
JitOpndReg _opnd_Reg[1];
/* For instructions with variable-number register operand(s). */
JitOpndVReg _opnd_VReg;
/* For lookupswitch instruction. */
JitOpndLookupSwitch _opnd_LookupSwitch;
} _opnd;
} JitInsn;
/**
* Opcodes of IR instructions.
*/
typedef enum JitOpcode {
#define INSN(NAME, OPND_KIND, OPND_NUM, FIRST_USE) JIT_OP_##NAME,
#include "jit_ir.def"
#undef INSN
JIT_OP_OPCODE_NUMBER
} JitOpcode;
/*
* Helper functions for creating new instructions. Don't call them
* directly. Use jit_insn_new_NAME, such as jit_insn_new_MOV instead.
*/
JitInsn *
_jit_insn_new_Reg_1(JitOpcode opc, JitReg r0);
JitInsn *
_jit_insn_new_Reg_2(JitOpcode opc, JitReg r0, JitReg r1);
JitInsn *
_jit_insn_new_Reg_3(JitOpcode opc, JitReg r0, JitReg r1, JitReg r2);
JitInsn *
_jit_insn_new_Reg_4(JitOpcode opc, JitReg r0, JitReg r1, JitReg r2, JitReg r3);
JitInsn *
_jit_insn_new_Reg_5(JitOpcode opc, JitReg r0, JitReg r1, JitReg r2, JitReg r3,
JitReg r4);
JitInsn *
_jit_insn_new_VReg_1(JitOpcode opc, JitReg r0, int n);
JitInsn *
_jit_insn_new_VReg_2(JitOpcode opc, JitReg r0, JitReg r1, int n);
JitInsn *
_jit_insn_new_LookupSwitch_1(JitOpcode opc, JitReg value, uint32 num);
/*
* Instruction creation functions jit_insn_new_NAME, where NAME is the
* name of the instruction defined in jit_ir.def.
*/
#define ARG_DECL_Reg_1 JitReg r0
#define ARG_LIST_Reg_1 r0
#define ARG_DECL_Reg_2 JitReg r0, JitReg r1
#define ARG_LIST_Reg_2 r0, r1
#define ARG_DECL_Reg_3 JitReg r0, JitReg r1, JitReg r2
#define ARG_LIST_Reg_3 r0, r1, r2
#define ARG_DECL_Reg_4 JitReg r0, JitReg r1, JitReg r2, JitReg r3
#define ARG_LIST_Reg_4 r0, r1, r2, r3
#define ARG_DECL_Reg_5 JitReg r0, JitReg r1, JitReg r2, JitReg r3, JitReg r4
#define ARG_LIST_Reg_5 r0, r1, r2, r3, r4
#define ARG_DECL_VReg_1 JitReg r0, int n
#define ARG_LIST_VReg_1 r0, n
#define ARG_DECL_VReg_2 JitReg r0, JitReg r1, int n
#define ARG_LIST_VReg_2 r0, r1, n
#define ARG_DECL_LookupSwitch_1 JitReg value, uint32 num
#define ARG_LIST_LookupSwitch_1 value, num
#define INSN(NAME, OPND_KIND, OPND_NUM, FIRST_USE) \
static inline JitInsn *jit_insn_new_##NAME( \
ARG_DECL_##OPND_KIND##_##OPND_NUM) \
{ \
return _jit_insn_new_##OPND_KIND##_##OPND_NUM( \
JIT_OP_##NAME, ARG_LIST_##OPND_KIND##_##OPND_NUM); \
}
#include "jit_ir.def"
#undef INSN
#undef ARG_DECL_Reg_1
#undef ARG_LIST_Reg_1
#undef ARG_DECL_Reg_2
#undef ARG_LIST_Reg_2
#undef ARG_DECL_Reg_3
#undef ARG_LIST_Reg_3
#undef ARG_DECL_Reg_4
#undef ARG_LIST_Reg_4
#undef ARG_DECL_Reg_5
#undef ARG_LIST_Reg_5
#undef ARG_DECL_VReg_1
#undef ARG_LIST_VReg_1
#undef ARG_DECL_VReg_2
#undef ARG_LIST_VReg_2
#undef ARG_DECL_LookupSwitch_1
#undef ARG_LIST_LookupSwitch_1
/**
* Delete an instruction
*
* @param insn an instruction to be deleted
*/
static inline void
jit_insn_delete(JitInsn *insn)
{
jit_free(insn);
}
/*
* Runtime type check functions that check whether accessing the n-th
* operand is legal. They are only used for in self-verification
* mode.
*
* @param insn any JIT IR instruction
* @param n index of the operand to access
*
* @return true if the access is legal
*/
bool
_jit_insn_check_opnd_access_Reg(const JitInsn *insn, unsigned n);
bool
_jit_insn_check_opnd_access_VReg(const JitInsn *insn, unsigned n);
bool
_jit_insn_check_opnd_access_LookupSwitch(const JitInsn *insn);
/**
* Get the pointer to the n-th register operand of the given
* instruction. The instruction format must be Reg.
*
* @param insn a Reg format instruction
* @param n index of the operand to get
*
* @return pointer to the n-th operand
*/
static inline JitReg *
jit_insn_opnd(JitInsn *insn, int n)
{
bh_assert(_jit_insn_check_opnd_access_Reg(insn, n));
return &insn->_opnd._opnd_Reg[n];
}
/**
* Get the pointer to the n-th register operand of the given
* instruction. The instruction format must be VReg.
*
* @param insn a VReg format instruction
* @param n index of the operand to get
*
* @return pointer to the n-th operand
*/
static inline JitReg *
jit_insn_opndv(JitInsn *insn, int n)
{
bh_assert(_jit_insn_check_opnd_access_VReg(insn, n));
return &insn->_opnd._opnd_VReg._reg[n];
}
/**
* Get the operand number of the given instruction. The instruction
* format must be VReg.
*
* @param insn a VReg format instruction
*
* @return operand number of the instruction
*/
static inline unsigned
jit_insn_opndv_num(const JitInsn *insn)
{
bh_assert(_jit_insn_check_opnd_access_VReg(insn, 0));
return insn->_opnd._opnd_VReg._reg_num;
}
/**
* Get the pointer to the LookupSwitch operand of the given
* instruction. The instruction format must be LookupSwitch.
*
* @param insn a LookupSwitch format instruction
*
* @return pointer to the operand
*/
static inline JitOpndLookupSwitch *
jit_insn_opndls(JitInsn *insn)
{
bh_assert(_jit_insn_check_opnd_access_LookupSwitch(insn));
return &insn->_opnd._opnd_LookupSwitch;
}
/**
* Insert instruction @p insn2 before instruction @p insn1.
*
* @param insn1 any instruction
* @param insn2 any instruction
*/
void
jit_insn_insert_before(JitInsn *insn1, JitInsn *insn2);
/**
* Insert instruction @p insn2 after instruction @p insn1.
*
* @param insn1 any instruction
* @param insn2 any instruction
*/
void
jit_insn_insert_after(JitInsn *insn1, JitInsn *insn2);
/**
* Unlink the instruction @p insn from the containing list.
*
* @param insn an instruction
*/
void
jit_insn_unlink(JitInsn *insn);
/**
* Get the hash value of the comparable instruction (pure functions
* and exception check instructions).
*
* @param insn an instruction
*
* @return hash value of the instruction
*/
unsigned
jit_insn_hash(JitInsn *insn);
/**
* Compare whether the two comparable instructions are the same.
*
* @param insn1 the first instruction
* @param insn2 the second instruction
*
* @return true if the two instructions are the same
*/
bool
jit_insn_equal(JitInsn *insn1, JitInsn *insn2);
/**
* Register vector for accessing predecessors and successors of a
* basic block.
*/
typedef struct JitRegVec {
JitReg *_base; /* points to the first register */
int32 _stride; /* stride to the next register */
uint32 num; /* number of registers */
} JitRegVec;
/**
* Get the address of the i-th register in the register vector.
*
* @param vec a register vector
* @param i index to the register vector
*
* @return the address of the i-th register in the vector
*/
static inline JitReg *
jit_reg_vec_at(const JitRegVec *vec, unsigned i)
{
bh_assert(i < vec->num);
return vec->_base + vec->_stride * i;
}
/**
* Visit each element in a register vector.
*
* @param V (JitRegVec) the register vector
* @param I (unsigned) index variable in the vector
* @param R (JitReg *) resiger pointer variable
*/
#define JIT_REG_VEC_FOREACH(V, I, R) \
for ((I) = 0, (R) = (V)._base; (I) < (V).num; (I)++, (R) += (V)._stride)
/**
* Visit each register defined by an instruction.
*
* @param V (JitRegVec) register vector of the instruction
* @param I (unsigned) index variable in the vector
* @param R (JitReg *) resiger pointer variable
* @param F index of the first used register
*/
#define JIT_REG_VEC_FOREACH_DEF(V, I, R, F) \
for ((I) = 0, (R) = (V)._base; (I) < (F); (I)++, (R) += (V)._stride)
/**
* Visit each register used by an instruction.
*
* @param V (JitRegVec) register vector of the instruction
* @param I (unsigned) index variable in the vector
* @param R (JitReg *) resiger pointer variable
* @param F index of the first used register
*/
#define JIT_REG_VEC_FOREACH_USE(V, I, R, F) \
for ((I) = (F), (R) = (V)._base + (F) * (V)._stride; (I) < (V).num; \
(I)++, (R) += (V)._stride)
/**
* Get a generic register vector that contains all register operands.
* The registers defined by the instruction, if any, appear before the
* registers used by the instruction.
*
* @param insn an instruction
*
* @return a register vector containing register operands
*/
JitRegVec
jit_insn_opnd_regs(JitInsn *insn);
/**
* Get the index of the first use register in the register vector
* returned by jit_insn_opnd_regs.
*
* @param insn an instruction
*
* @return the index of the first use register in the register vector
*/
unsigned
jit_insn_opnd_first_use(JitInsn *insn);
/**
* Basic Block of JIT IR. It is a basic block only if the IR is not in
* non-BB form. The block is represented by a special phi node, whose
* result and arguments are label registers. The result label is the
* containing block's label. The arguments are labels of predecessors
* of the block. Successor labels are stored in the last instruction,
* which must be a control flow instruction. Instructions of a block
* are linked in a circular linked list with the block phi node as the
* end of the list. The next and prev field of the block phi node
* point to the first and last instructions of the block.
*/
typedef JitInsn JitBasicBlock;
/**
* Create a new basic block instance.
*
* @param label the label of the new basic block
* @param n number of predecessors
*
* @return the created new basic block instance
*/
JitBasicBlock *
jit_basic_block_new(JitReg label, int n);
/**
* Delete a basic block instance and all instructions init.
*
* @param block the basic block to be deleted
*/
void
jit_basic_block_delete(JitBasicBlock *block);
/**
* Get the label of the basic block.
*
* @param block a basic block instance
*
* @return the label of the basic block
*/
static inline JitReg
jit_basic_block_label(JitBasicBlock *block)
{
return *(jit_insn_opndv(block, 0));
}
/**
* Get the first instruction of the basic block.
*
* @param block a basic block instance
*
* @return the first instruction of the basic block
*/
static inline JitInsn *
jit_basic_block_first_insn(JitBasicBlock *block)
{
return block->next;
}
/**
* Get the last instruction of the basic block.
*
* @param block a basic block instance
*
* @return the last instruction of the basic block
*/
static inline JitInsn *
jit_basic_block_last_insn(JitBasicBlock *block)
{
return block->prev;
}
/**
* Get the end of instruction list of the basic block (which is always
* the block itself).
*
* @param block a basic block instance
*
* @return the end of instruction list of the basic block
*/
static inline JitInsn *
jit_basic_block_end_insn(JitBasicBlock *block)
{
return block;
}
/**
* Visit each instruction in the block from the first to the last. In
* the code block, the instruction pointer @p I must be a valid
* pointer to an instruction in the block. That means if the
* instruction may be deleted, @p I must point to the previous or next
* valid instruction before the next iteration.
*
* @param B (JitBasicBlock *) the block
* @param I (JitInsn *) instruction visited
*/
#define JIT_FOREACH_INSN(B, I) \
for (I = jit_basic_block_first_insn(B); I != jit_basic_block_end_insn(B); \
I = I->next)
/**
* Visit each instruction in the block from the last to the first. In
* the code block, the instruction pointer @p I must be a valid
* pointer to an instruction in the block. That means if the
* instruction may be deleted, @p I must point to the previous or next
* valid instruction before the next iteration.
*
* @param B (JitBasicBlock *) the block
* @param I (JitInsn *) instruction visited
*/
#define JIT_FOREACH_INSN_REVERSE(B, I) \
for (I = jit_basic_block_last_insn(B); I != jit_basic_block_end_insn(B); \
I = I->prev)
/**
* Prepend an instruction in the front of the block. The position is
* just after the block phi node (the block instance itself).
*
* @param block a block
* @param insn an instruction to be prepended
*/
static inline void
jit_basic_block_prepend_insn(JitBasicBlock *block, JitInsn *insn)
{
jit_insn_insert_after(block, insn);
}
/**
* Append an instruction to the end of the basic block.
*
* @param block a basic block
* @param insn an instruction to be appended
*/
static inline void
jit_basic_block_append_insn(JitBasicBlock *block, JitInsn *insn)
{
jit_insn_insert_before(block, insn);
}
/**
* Get the register vector of predecessors of a basic block.
*
* @param block a JIT IR block
*
* @return register vector of the predecessors
*/
JitRegVec
jit_basic_block_preds(JitBasicBlock *block);
/**
* Get the register vector of successors of a basic block.
*
* @param block a JIT IR basic block
*
* @return register vector of the successors
*/
JitRegVec
jit_basic_block_succs(JitBasicBlock *block);
/**
* Hard register information of one kind.
*/
typedef struct JitHardRegInfo {
struct {
/* Hard register number of this kind. */
uint32 num;
/* Whether each register is fixed. */
const uint8 *fixed;
/* Whether each register is caller-saved in the native ABI. */
const uint8 *caller_saved_native;
/* Whether each register is caller-saved in the JITed ABI. */
const uint8 *caller_saved_jitted;
} info[JIT_REG_KIND_L32];
/* The indexes of hard registers of frame pointer, exec_env and cmp. */
uint32 fp_hreg_index;
uint32 exec_env_hreg_index;
uint32 cmp_hreg_index;
} JitHardRegInfo;
struct JitBlock;
struct JitCompContext;
struct JitValueSlot;
/**
* Value in the WASM operation stack, each stack element
* is a Jit register
*/
typedef struct JitValue {
struct JitValue *next;
struct JitValue *prev;
struct JitValueSlot *value;
/* VALUE_TYPE_I32/I64/F32/F64/VOID */
uint8 type;
} JitValue;
/**
* Value stack, represents stack elements in a WASM block
*/
typedef struct JitValueStack {
JitValue *value_list_head;
JitValue *value_list_end;
} JitValueStack;
/* Record information of a value slot of local variable or stack
during translation. */
typedef struct JitValueSlot {
/* The virtual register that holds the value of the slot if the
value of the slot is in register. */
JitReg reg;
/* The dirty bit of the value slot. It's set if the value in
register is newer than the value in memory. */
uint32 dirty : 1;
/* Whether the new value in register is a reference, which is valid
only when the dirty bit is set. */
uint32 ref : 1;
/* Committed reference flag. 0: unknown, 1: not-reference, 2:
reference. */
uint32 committed_ref : 2;
} JitValueSlot;
typedef struct JitMemRegs {
JitReg memory_inst;
/* The following registers should be re-loaded after
memory.grow, callbc and callnative */
JitReg memory_data;
JitReg memory_data_end;
JitReg mem_bound_check_1byte;
JitReg mem_bound_check_2bytes;
JitReg mem_bound_check_4bytes;
JitReg mem_bound_check_8bytes;
JitReg mem_bound_check_16bytes;
} JitMemRegs;
typedef struct JitTableRegs {
JitReg table_inst;
JitReg table_data;
/* Should be re-loaded after table.grow,
callbc and callnative */
JitReg table_cur_size;
} JitTableRegs;
/* Frame information for translation */
typedef struct JitFrame {
/* The current wasm module */
WASMModule *cur_wasm_module;
/* The current wasm function */
WASMFunction *cur_wasm_func;
/* The current wasm function index */
uint32 cur_wasm_func_idx;
/* The current compilation context */
struct JitCompContext *cc;
/* Max local slot number. */
uint32 max_locals;
/* Max operand stack slot number. */
uint32 max_stacks;
/* Instruction pointer */
uint8 *ip;
/* Stack top pointer */
JitValueSlot *sp;
/* Committed instruction pointer */
uint8 *committed_ip;
/* Committed stack top pointer */
JitValueSlot *committed_sp;
/* WASM module instance */
JitReg module_inst_reg;
/* WASM module */
JitReg module_reg;
/* module_inst->import_func_ptrs */
JitReg import_func_ptrs_reg;
/* module_inst->fast_jit_func_ptrs */
JitReg fast_jit_func_ptrs_reg;
/* module_inst->func_type_indexes */
JitReg func_type_indexes_reg;
/* Base address of global data */
JitReg global_data_reg;
/* Boundary of auxiliary stack */
JitReg aux_stack_bound_reg;
/* Bottom of auxiliary stack */
JitReg aux_stack_bottom_reg;
/* Memory instances */
JitReg memories_reg;
/* Data of memory instances */
JitMemRegs *memory_regs;
/* Table instances */
JitReg tables_reg;
/* Data of table instances */
JitTableRegs *table_regs;
/* Local variables */
JitValueSlot lp[1];
} JitFrame;
typedef struct JitIncomingInsn {
struct JitIncomingInsn *next;
JitInsn *insn;
uint32 opnd_idx;
} JitIncomingInsn, *JitIncomingInsnList;
typedef struct JitBlock {
struct JitBlock *next;
struct JitBlock *prev;
/* The current Jit Block */
struct JitCompContext *cc;
/* LABEL_TYPE_BLOCK/LOOP/IF/FUNCTION */
uint32 label_type;
/* code of else opcode of this block, if it is a IF block */
uint8 *wasm_code_else;
/* code of end opcode of this block */
uint8 *wasm_code_end;
/* JIT label points to code begin */
JitBasicBlock *basic_block_entry;
/* JIT label points to code else */
JitBasicBlock *basic_block_else;
/* JIT label points to code end */
JitBasicBlock *basic_block_end;
/* Incoming INSN for basic_block_else */
JitInsn *incoming_insn_for_else_bb;
/* Incoming INSNs for basic_block_end */
JitIncomingInsnList incoming_insns_for_end_bb;
/* WASM operation stack */
JitValueStack value_stack;
/* Param count/types/PHIs of this block */
uint32 param_count;
uint8 *param_types;
/* Result count/types/PHIs of this block */
uint32 result_count;
uint8 *result_types;
/* The begin frame stack pointer of this block */
JitValueSlot *frame_sp_begin;
} JitBlock;
/**
* Block stack, represents WASM block stack elements
*/
typedef struct JitBlockStack {
JitBlock *block_list_head;
JitBlock *block_list_end;
} JitBlockStack;
/**
* The JIT compilation context for one compilation process of a
* compilation unit.
*/
typedef struct JitCompContext {
/* Hard register information of each kind. */
const JitHardRegInfo *hreg_info;
/* No. of the pass to be applied. */
uint8 cur_pass_no;
/* The current wasm module */
WASMModule *cur_wasm_module;
/* The current wasm function */
WASMFunction *cur_wasm_func;
/* The current wasm function index */
uint32 cur_wasm_func_idx;
/* The block stack */
JitBlockStack block_stack;
bool mem_space_unchanged;
/* Entry and exit labels of the compilation unit, whose numbers must
be 0 and 1 respectively (see JIT_FOREACH_BLOCK). */
JitReg entry_label;
JitReg exit_label;
JitBasicBlock **exce_basic_blocks;
JitIncomingInsnList *incoming_insns_for_exec_bbs;
/* The current basic block to generate instructions */
JitBasicBlock *cur_basic_block;
/* Registers of frame pointer, exec_env and CMP result. */
JitReg fp_reg;
JitReg exec_env_reg;
JitReg cmp_reg;
/* WASM module instance */
JitReg module_inst_reg;
/* WASM module */
JitReg module_reg;
/* module_inst->import_func_ptrs */
JitReg import_func_ptrs_reg;
/* module_inst->fast_jit_func_ptrs */
JitReg fast_jit_func_ptrs_reg;
/* module_inst->func_type_indexes */
JitReg func_type_indexes_reg;
/* Base address of global data */
JitReg global_data_reg;
/* Boundary of auxiliary stack */
JitReg aux_stack_bound_reg;
/* Bottom of auxiliary stack */
JitReg aux_stack_bottom_reg;
/* Memory instances */
JitReg memories_reg;
/* Data of memory instances */
JitMemRegs *memory_regs;
/* Table instances */
JitReg tables_reg;
/* Data of table instances */
JitTableRegs *table_regs;
/* Current frame information for translation */
JitFrame *jit_frame;
/* The total frame size of current function */
uint32 total_frame_size;
/* The spill cache offset to the interp frame */
uint32 spill_cache_offset;
/* The spill cache size */
uint32 spill_cache_size;
/* The offset of jitted_return_address in the frame, which is set by
the pass frontend and used by the pass codegen. */
uint32 jitted_return_address_offset;
/* Begin and end addresses of the jitted code produced by the pass
codegen and consumed by the region registration after codegen and
the pass dump. */
void *jitted_addr_begin;
void *jitted_addr_end;
char last_error[128];
/* Below fields are all private. Don't access them directly. */
/* Reference count of the compilation context. */
uint16 _reference_count;
/* Constant values. */
struct {
/* Number of constant values of each kind. */
uint32 _num[JIT_REG_KIND_L32];
/* Capacity of register annotations of each kind. */
uint32 _capacity[JIT_REG_KIND_L32];
/* Constant vallues of each kind. */
uint8 *_value[JIT_REG_KIND_L32];
/* Next element on the list of values with the same hash code. */
JitReg *_next[JIT_REG_KIND_L32];
/* Size of the hash table. */
uint32 _hash_table_size;
/* Map values to JIT register. */
JitReg *_hash_table;
} _const_val;
/* Annotations of labels, registers and instructions. */
struct {
/* Number of all ever created labels. */
uint32 _label_num;
/* Capacity of label annotations. */
uint32 _label_capacity;
/* Number of all ever created instructions. */
uint32 _insn_num;
/* Capacity of instruction annotations. */
uint32 _insn_capacity;
/* Number of ever created registers of each kind. */
uint32 _reg_num[JIT_REG_KIND_L32];
/* Capacity of register annotations of each kind. */
uint32 _reg_capacity[JIT_REG_KIND_L32];
/* Storage of annotations. */
#define ANN_LABEL(TYPE, NAME) TYPE *_label_##NAME;
#define ANN_INSN(TYPE, NAME) TYPE *_insn_##NAME;
#define ANN_REG(TYPE, NAME) TYPE *_reg_##NAME[JIT_REG_KIND_L32];
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/* Flags of annotations. */
#define ANN_LABEL(TYPE, NAME) uint32 _label_##NAME##_enabled : 1;
#define ANN_INSN(TYPE, NAME) uint32 _insn_##NAME##_enabled : 1;
#define ANN_REG(TYPE, NAME) uint32 _reg_##NAME##_enabled : 1;
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
} _ann;
/* Instruction hash table. */
struct {
/* Size of the hash table. */
uint32 _size;
/* The hash table. */
JitInsn **_table;
} _insn_hash_table;
/* indicate if the last comparision is about floating-point numbers or not
*/
bool last_cmp_on_fp;
} JitCompContext;
/*
* Annotation accessing functions jit_annl_NAME, jit_anni_NAME and
* jit_annr_NAME.
*/
#define ANN_LABEL(TYPE, NAME) \
static inline TYPE *jit_annl_##NAME(JitCompContext *cc, JitReg label) \
{ \
unsigned idx = jit_reg_no(label); \
bh_assert(jit_reg_kind(label) == JIT_REG_KIND_L32); \
bh_assert(idx < cc->_ann._label_num); \
bh_assert(cc->_ann._label_##NAME##_enabled); \
return &cc->_ann._label_##NAME[idx]; \
}
#define ANN_INSN(TYPE, NAME) \
static inline TYPE *jit_anni_##NAME(JitCompContext *cc, JitInsn *insn) \
{ \
unsigned uid = insn->uid; \
bh_assert(uid < cc->_ann._insn_num); \
bh_assert(cc->_ann._insn_##NAME##_enabled); \
return &cc->_ann._insn_##NAME[uid]; \
}
#define ANN_REG(TYPE, NAME) \
static inline TYPE *jit_annr_##NAME(JitCompContext *cc, JitReg reg) \
{ \
unsigned kind = jit_reg_kind(reg); \
unsigned no = jit_reg_no(reg); \
bh_assert(kind < JIT_REG_KIND_L32); \
bh_assert(no < cc->_ann._reg_num[kind]); \
bh_assert(cc->_ann._reg_##NAME##_enabled); \
return &cc->_ann._reg_##NAME[kind][no]; \
}
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/*
* Annotation enabling functions jit_annl_enable_NAME,
* jit_anni_enable_NAME and jit_annr_enable_NAME, which allocate
* sufficient memory for the annotations.
*/
#define ANN_LABEL(TYPE, NAME) bool jit_annl_enable_##NAME(JitCompContext *cc);
#define ANN_INSN(TYPE, NAME) bool jit_anni_enable_##NAME(JitCompContext *cc);
#define ANN_REG(TYPE, NAME) bool jit_annr_enable_##NAME(JitCompContext *cc);
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/*
* Annotation disabling functions jit_annl_disable_NAME,
* jit_anni_disable_NAME and jit_annr_disable_NAME, which release
* memory of the annotations. Before calling these functions,
* resources owned by the annotations must be explictely released.
*/
#define ANN_LABEL(TYPE, NAME) void jit_annl_disable_##NAME(JitCompContext *cc);
#define ANN_INSN(TYPE, NAME) void jit_anni_disable_##NAME(JitCompContext *cc);
#define ANN_REG(TYPE, NAME) void jit_annr_disable_##NAME(JitCompContext *cc);
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/*
* Functions jit_annl_is_enabled_NAME, jit_anni_is_enabled_NAME and
* jit_annr_is_enabled_NAME for checking whether an annotation is
* enabled.
*/
#define ANN_LABEL(TYPE, NAME) \
static inline bool jit_annl_is_enabled_##NAME(JitCompContext *cc) \
{ \
return !!cc->_ann._label_##NAME##_enabled; \
}
#define ANN_INSN(TYPE, NAME) \
static inline bool jit_anni_is_enabled_##NAME(JitCompContext *cc) \
{ \
return !!cc->_ann._insn_##NAME##_enabled; \
}
#define ANN_REG(TYPE, NAME) \
static inline bool jit_annr_is_enabled_##NAME(JitCompContext *cc) \
{ \
return !!cc->_ann._reg_##NAME##_enabled; \
}
#include "jit_ir.def"
#undef ANN_LABEL
#undef ANN_INSN
#undef ANN_REG
/**
* Initialize a compilation context.
*
* @param cc the compilation context
* @param htab_size the initial hash table size of constant pool
*
* @return cc if succeeds, NULL otherwise
*/
JitCompContext *
jit_cc_init(JitCompContext *cc, unsigned htab_size);
/**
* Release all resources of a compilation context, which doesn't
* include the compilation context itself.
*
* @param cc the compilation context
*/
void
jit_cc_destroy(JitCompContext *cc);
/**
* Increase the reference count of the compilation context.
*
* @param cc the compilation context
*/
static inline void
jit_cc_inc_ref(JitCompContext *cc)
{
cc->_reference_count++;
}
/**
* Decrease the reference_count and destroy and free the compilation
* context if the reference_count is decreased to zero.
*
* @param cc the compilation context
*/
void
jit_cc_delete(JitCompContext *cc);
char *
jit_get_last_error(JitCompContext *cc);
void
jit_set_last_error(JitCompContext *cc, const char *error);
void
jit_set_last_error_v(JitCompContext *cc, const char *format, ...);
/**
* Create a I32 constant value with relocatable into the compilation
* context. A constant value that has relocation info cannot be
* constant-folded as normal constants because its value depends on
* runtime context and may be different in different executions.
*
* @param cc compilation context
* @param val a I32 value
* @param rel relocation information
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_I32_rel(JitCompContext *cc, int32 val, uint32 rel);
/**
* Create a I32 constant value without relocation info (0) into the
* compilation context.
*
* @param cc compilation context
* @param val a I32 value
*
* @return a constant register containing the value
*/
static inline JitReg
jit_cc_new_const_I32(JitCompContext *cc, int32 val)
{
return jit_cc_new_const_I32_rel(cc, val, 0);
}
/**
* Create a I64 constant value into the compilation context.
*
* @param cc compilation context
* @param val a I64 value
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_I64(JitCompContext *cc, int64 val);
#if UINTPTR_MAX == UINT64_MAX
#define jit_cc_new_const_PTR jit_cc_new_const_I64
#else
#define jit_cc_new_const_PTR jit_cc_new_const_I32
#endif
/**
* Create a F32 constant value into the compilation context.
*
* @param cc compilation context
* @param val a F32 value
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_F32(JitCompContext *cc, float val);
/**
* Create a F64 constant value into the compilation context.
*
* @param cc compilation context
* @param val a F64 value
*
* @return a constant register containing the value
*/
JitReg
jit_cc_new_const_F64(JitCompContext *cc, double val);
/**
* Get the relocation info of a I32 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the relocation info of the constant
*/
uint32
jit_cc_get_const_I32_rel(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a I32 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
int32
jit_cc_get_const_I32(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a I64 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
int64
jit_cc_get_const_I64(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a F32 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
float
jit_cc_get_const_F32(JitCompContext *cc, JitReg reg);
/**
* Get the constant value of a F64 constant register.
*
* @param cc compilation context
* @param reg constant register
*
* @return the constant value
*/
double
jit_cc_get_const_F64(JitCompContext *cc, JitReg reg);
/**
* Get the number of total created labels.
*
* @param cc the compilation context
*
* @return the number of total created labels
*/
static inline unsigned
jit_cc_label_num(JitCompContext *cc)
{
return cc->_ann._label_num;
}
/**
* Get the number of total created instructions.
*
* @param cc the compilation context
*
* @return the number of total created instructions
*/
static inline unsigned
jit_cc_insn_num(JitCompContext *cc)
{
return cc->_ann._insn_num;
}
/**
* Get the number of total created registers.
*
* @param cc the compilation context
* @param kind the register kind
*
* @return the number of total created registers
*/
static inline unsigned
jit_cc_reg_num(JitCompContext *cc, unsigned kind)
{
bh_assert(kind < JIT_REG_KIND_L32);
return cc->_ann._reg_num[kind];
}
/**
* Create a new label in the compilation context.
*
* @param cc the compilation context
*
* @return a new label in the compilation context
*/
JitReg
jit_cc_new_label(JitCompContext *cc);
/**
* Create a new block with a new label in the compilation context.
*
* @param cc the compilation context
* @param n number of predecessors
*
* @return a new block with a new label in the compilation context
*/
JitBasicBlock *
jit_cc_new_basic_block(JitCompContext *cc, int n);
/**
* Resize the predecessor number of a block.
*
* @param cc the containing compilation context
* @param block block to be resized
* @param n new number of predecessors
*
* @return the new block if succeeds, NULL otherwise
*/
JitBasicBlock *
jit_cc_resize_basic_block(JitCompContext *cc, JitBasicBlock *block, int n);
/**
* Initialize the instruction hash table to the given size and enable
* the instruction's _hash_link annotation.
*
* @param cc the containing compilation context
* @param n size of the hash table
*
* @return true if succeeds, false otherwise
*/
bool
jit_cc_enable_insn_hash(JitCompContext *cc, unsigned n);
/**
* Destroy the instruction hash table and disable the instruction's
* _hash_link annotation.
*
* @param cc the containing compilation context
*/
void
jit_cc_disable_insn_hash(JitCompContext *cc);
/**
* Reset the hash table entries.
*
* @param cc the containing compilation context
*/
void
jit_cc_reset_insn_hash(JitCompContext *cc);
/**
* Allocate a new instruction ID in the compilation context and set it
* to the given instruction.
*
* @param cc the compilation context
* @param insn IR instruction
*
* @return the insn with uid being set
*/
JitInsn *
jit_cc_set_insn_uid(JitCompContext *cc, JitInsn *insn);
/*
* Similar to jit_cc_set_insn_uid except that if setting uid failed,
* delete the insn. Only used by jit_cc_new_insn
*/
JitInsn *
_jit_cc_set_insn_uid_for_new_insn(JitCompContext *cc, JitInsn *insn);
/**
* Create a new instruction in the compilation context.
*
* @param cc the compilationo context
* @param NAME instruction name
*
* @return a new instruction in the compilation context
*/
#define jit_cc_new_insn(cc, NAME, ...) \
_jit_cc_set_insn_uid_for_new_insn(cc, jit_insn_new_##NAME(__VA_ARGS__))
/*
* Helper function for jit_cc_new_insn_norm.
*/
JitInsn *
_jit_cc_new_insn_norm(JitCompContext *cc, JitReg *result, JitInsn *insn);
/**
* Create a new instruction in the compilation context and normalize
* the instruction (constant folding and simplification etc.). If the
* instruction hashing is enabled (anni__hash_link is enabled), try to
* find the existing equivalent insruction first before adding a new
* one to the compilation contest.
*
* @param cc the compilationo context
* @param result returned result of the instruction. If the value is
* non-zero, it is the result of the constant-folding or an exsiting
* equivalent instruction, in which case no instruction is added into
* the compilation context. Otherwise, a new normalized instruction
* has been added into the compilation context.
* @param NAME instruction name
*
* @return a new or existing instruction in the compilation context
*/
#define jit_cc_new_insn_norm(cc, result, NAME, ...) \
_jit_cc_new_insn_norm(cc, result, jit_insn_new_##NAME(__VA_ARGS__))
/**
* Helper function for GEN_INSN
*
* @param cc compilation context
* @param block the current block
* @param insn the new instruction
*
* @return the new instruction if inserted, NULL otherwise
*/
static inline JitInsn *
_gen_insn(JitCompContext *cc, JitInsn *insn)
{
if (insn)
jit_basic_block_append_insn(cc->cur_basic_block, insn);
else
jit_set_last_error(cc, "generate insn failed");
return insn;
}
/**
* Generate and append an instruction to the current block.
*/
#define GEN_INSN(...) _gen_insn(cc, jit_cc_new_insn(cc, __VA_ARGS__))
/**
* Create a constant register without relocation info.
*
* @param Type type of the register
* @param val the constant value
*
* @return the constant register if succeeds, 0 otherwise
*/
#define NEW_CONST(Type, val) jit_cc_new_const_##Type(cc, val)
/**
* Create a new virtual register in the compilation context.
*
* @param cc the compilation context
* @param kind kind of the register
*
* @return a new label in the compilation context
*/
JitReg
jit_cc_new_reg(JitCompContext *cc, unsigned kind);
/*
* Create virtual registers with specific types in the compilation
* context. They are more convenient than the above one.
*/
static inline JitReg
jit_cc_new_reg_I32(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_I32);
}
static inline JitReg
jit_cc_new_reg_I64(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_I64);
}
#if UINTPTR_MAX == UINT64_MAX
#define jit_cc_new_reg_ptr jit_cc_new_reg_I64
#else
#define jit_cc_new_reg_ptr jit_cc_new_reg_I32
#endif
static inline JitReg
jit_cc_new_reg_F32(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_F32);
}
static inline JitReg
jit_cc_new_reg_F64(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_F64);
}
static inline JitReg
jit_cc_new_reg_V64(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_V64);
}
static inline JitReg
jit_cc_new_reg_V128(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_V128);
}
static inline JitReg
jit_cc_new_reg_V256(JitCompContext *cc)
{
return jit_cc_new_reg(cc, JIT_REG_KIND_V256);
}
/**
* Get the hard register numbe of the given kind
*
* @param cc the compilation context
* @param kind the register kind
*
* @return number of hard registers of the given kind
*/
static inline unsigned
jit_cc_hreg_num(JitCompContext *cc, unsigned kind)
{
bh_assert(kind < JIT_REG_KIND_L32);
return cc->hreg_info->info[kind].num;
}
/**
* Check whether a given register is a hard register.
*
* @param cc the compilation context
* @param reg the register which must be a variable
*
* @return true if the register is a hard register
*/
static inline bool
jit_cc_is_hreg(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_reg_is_variable(reg));
return no < cc->hreg_info->info[kind].num;
}
/**
* Check whether the given hard register is fixed.
*
* @param cc the compilation context
* @param reg the hard register
*
* @return true if the hard register is fixed
*/
static inline bool
jit_cc_is_hreg_fixed(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_cc_is_hreg(cc, reg));
return !!cc->hreg_info->info[kind].fixed[no];
}
/**
* Check whether the given hard register is caller-saved-native.
*
* @param cc the compilation context
* @param reg the hard register
*
* @return true if the hard register is caller-saved-native
*/
static inline bool
jit_cc_is_hreg_caller_saved_native(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_cc_is_hreg(cc, reg));
return !!cc->hreg_info->info[kind].caller_saved_native[no];
}
/**
* Check whether the given hard register is caller-saved-jitted.
*
* @param cc the compilation context
* @param reg the hard register
*
* @return true if the hard register is caller-saved-jitted
*/
static inline bool
jit_cc_is_hreg_caller_saved_jitted(JitCompContext *cc, JitReg reg)
{
unsigned kind = jit_reg_kind(reg);
unsigned no = jit_reg_no(reg);
bh_assert(jit_cc_is_hreg(cc, reg));
return !!cc->hreg_info->info[kind].caller_saved_jitted[no];
}
/**
* Return the entry block of the compilation context.
*
* @param cc the compilation context
*
* @return the entry block of the compilation context
*/
static inline JitBasicBlock *
jit_cc_entry_basic_block(JitCompContext *cc)
{
return *(jit_annl_basic_block(cc, cc->entry_label));
}
/**
* Return the exit block of the compilation context.
*
* @param cc the compilation context
*
* @return the exit block of the compilation context
*/
static inline JitBasicBlock *
jit_cc_exit_basic_block(JitCompContext *cc)
{
return *(jit_annl_basic_block(cc, cc->exit_label));
}
void
jit_value_stack_push(JitValueStack *stack, JitValue *value);
JitValue *
jit_value_stack_pop(JitValueStack *stack);
void
jit_value_stack_destroy(JitValueStack *stack);
JitBlock *
jit_block_stack_top(JitBlockStack *stack);
void
jit_block_stack_push(JitBlockStack *stack, JitBlock *block);
JitBlock *
jit_block_stack_pop(JitBlockStack *stack);
void
jit_block_stack_destroy(JitBlockStack *stack);
bool
jit_block_add_incoming_insn(JitBlock *block, JitInsn *insn, uint32 opnd_idx);
void
jit_block_destroy(JitBlock *block);
bool
jit_cc_push_value(JitCompContext *cc, uint8 type, JitReg value);
bool
jit_cc_pop_value(JitCompContext *cc, uint8 type, JitReg *p_value);
bool
jit_lock_reg_in_insn(JitCompContext *cc, JitInsn *the_insn, JitReg reg_to_lock);
/**
* Update the control flow graph after successors of blocks are
* changed so that the predecessor vector of each block represents the
* updated status. The predecessors may not be required by all
* passes, so we don't need to keep them always being updated.
*
* @param cc the compilation context
*
* @return true if succeeds, false otherwise
*/
bool
jit_cc_update_cfg(JitCompContext *cc);
/**
* Visit each normal block (which is not entry nor exit block) in a
* compilation context. New blocks can be added in the loop body, but
* they won't be visited. Blocks can also be removed safely (by
* setting the label's block annotation to NULL) in the loop body.
*
* @param CC (JitCompContext *) the compilation context
* @param I (unsigned) index variable of the block (label no)
* @param E (unsigned) end index variable of block (last index + 1)
* @param B (JitBasicBlock *) block pointer variable
*/
#define JIT_FOREACH_BLOCK(CC, I, E, B) \
for ((I) = 2, (E) = (CC)->_ann._label_num; (I) < (E); (I)++) \
if (((B) = (CC)->_ann._label_basic_block[(I)]))
/**
* The version that includes entry and exit block.
*/
#define JIT_FOREACH_BLOCK_ENTRY_EXIT(CC, I, E, B) \
for ((I) = 0, (E) = (CC)->_ann._label_num; (I) < (E); (I)++) \
if (((B) = (CC)->_ann._label_basic_block[(I)]))
/**
* Visit each normal block (which is not entry nor exit block) in a
* compilation context in reverse order. New blocks can be added in
* the loop body, but they won't be visited. Blocks can also be
* removed safely (by setting the label's block annotation to NULL) in
* the loop body.
*
* @param CC (JitCompContext *) the compilation context
* @param I (unsigned) index of the block (label no)
* @param B (JitBasicBlock *) block pointer
*/
#define JIT_FOREACH_BLOCK_REVERSE(CC, I, B) \
for ((I) = (CC)->_ann._label_num; (I) > 2; (I)--) \
if (((B) = (CC)->_ann._label_basic_block[(I)-1]))
/**
* The version that includes entry and exit block.
*/
#define JIT_FOREACH_BLOCK_REVERSE_ENTRY_EXIT(CC, I, B) \
for ((I) = (CC)->_ann._label_num; (I) > 0; (I)--) \
if (((B) = (CC)->_ann._label_basic_block[(I)-1]))
#ifdef __cplusplus
}
#endif
#endif /* end of _JIT_IR_H_ */