This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
wasm-micro-runtime/core/iwasm/interpreter/wasm_interp_fast.c

2279 lines
70 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasm_interp.h"
#include "bh_log.h"
#include "wasm_runtime.h"
#include "wasm_opcode.h"
#include "wasm_loader.h"
#include "../common/wasm_exec_env.h"
typedef int32 CellType_I32;
typedef int64 CellType_I64;
typedef float32 CellType_F32;
typedef float64 CellType_F64;
#define BR_TABLE_TMP_BUF_LEN 32
/* 64-bit Memory accessors. */
#if WASM_CPU_SUPPORTS_UNALIGNED_64BIT_ACCESS != 0
#define PUT_I64_TO_ADDR(addr, value) do { \
*(int64*)(addr) = (int64)(value); \
} while (0)
#define PUT_F64_TO_ADDR(addr, value) do { \
*(float64*)(addr) = (float64)(value); \
} while (0)
#define GET_I64_FROM_ADDR(addr) (*(int64*)(addr))
#define GET_F64_FROM_ADDR(addr) (*(float64*)(addr))
/* For STORE opcodes */
#define STORE_I64 PUT_I64_TO_ADDR
#define STORE_U32(addr, value) do { \
*(uint32*)(addr) = (uint32)(value); \
} while (0)
#define STORE_U16(addr, value) do { \
*(uint16*)(addr) = (uint16)(value); \
} while (0)
/* For LOAD opcodes */
#define LOAD_I64(addr) (*(int64*)(addr))
#define LOAD_F64(addr) (*(float64*)(addr))
#define LOAD_F32(addr) (*(float32*)(addr))
#define LOAD_I32(addr) (*(int32*)(addr))
#define LOAD_U32(addr) (*(uint32*)(addr))
#define LOAD_I16(addr) (*(int16*)(addr))
#define LOAD_U16(addr) (*(uint16*)(addr))
#else /* WASM_CPU_SUPPORTS_UNALIGNED_64BIT_ACCESS != 0 */
#define PUT_I64_TO_ADDR(addr, value) do { \
union { int64 val; uint32 parts[2]; } u; \
u.val = (int64)(value); \
(addr)[0] = u.parts[0]; \
(addr)[1] = u.parts[1]; \
} while (0)
#define PUT_F64_TO_ADDR(addr, value) do { \
union { float64 val; uint32 parts[2]; } u; \
u.val = (value); \
(addr)[0] = u.parts[0]; \
(addr)[1] = u.parts[1]; \
} while (0)
static inline int64
GET_I64_FROM_ADDR(uint32 *addr)
{
union { int64 val; uint32 parts[2]; } u;
u.parts[0] = addr[0];
u.parts[1] = addr[1];
return u.val;
}
static inline float64
GET_F64_FROM_ADDR (uint32 *addr)
{
union { float64 val; uint32 parts[2]; } u;
u.parts[0] = addr[0];
u.parts[1] = addr[1];
return u.val;
}
/* For STORE opcodes */
#define STORE_I64(addr, value) do { \
uintptr_t addr1 = (uintptr_t)(addr); \
union { int64 val; uint32 u32[2]; \
uint16 u16[4]; uint8 u8[8]; } u; \
if ((addr1 & (uintptr_t)7) == 0) \
*(int64*)(addr) = (int64)(value); \
else { \
u.val = (int64)(value); \
if ((addr1 & (uintptr_t)3) == 0) { \
((uint32*)(addr))[0] = u.u32[0]; \
((uint32*)(addr))[1] = u.u32[1]; \
} \
else if ((addr1 & (uintptr_t)1) == 0) { \
((uint16*)(addr))[0] = u.u16[0]; \
((uint16*)(addr))[1] = u.u16[1]; \
((uint16*)(addr))[2] = u.u16[2]; \
((uint16*)(addr))[3] = u.u16[3]; \
} \
else { \
int32 t; \
for (t = 0; t < 8; t++) \
((uint8*)(addr))[t] = u.u8[t]; \
} \
} \
} while (0)
#define STORE_U32(addr, value) do { \
uintptr_t addr1 = (uintptr_t)(addr); \
union { uint32 val; \
uint16 u16[2]; uint8 u8[4]; } u; \
if ((addr1 & (uintptr_t)3) == 0) \
*(uint32*)(addr) = (uint32)(value); \
else { \
u.val = (uint32)(value); \
if ((addr1 & (uintptr_t)1) == 0) { \
((uint16*)(addr))[0] = u.u16[0]; \
((uint16*)(addr))[1] = u.u16[1]; \
} \
else { \
((uint8*)(addr))[0] = u.u8[0]; \
((uint8*)(addr))[1] = u.u8[1]; \
((uint8*)(addr))[2] = u.u8[2]; \
((uint8*)(addr))[3] = u.u8[3]; \
} \
} \
} while (0)
#define STORE_U16(addr, value) do { \
union { uint16 val; uint8 u8[2]; } u; \
u.val = (uint16)(value); \
((uint8*)(addr))[0] = u.u8[0]; \
((uint8*)(addr))[1] = u.u8[1]; \
} while (0)
/* For LOAD opcodes */
static inline int64
LOAD_I64(void *addr)
{
uintptr_t addr1 = (uintptr_t)addr;
union { int64 val; uint32 u32[2];
uint16 u16[4]; uint8 u8[8]; } u;
if ((addr1 & (uintptr_t)7) == 0)
return *(int64*)addr;
if ((addr1 & (uintptr_t)3) == 0) {
u.u32[0] = ((uint32*)addr)[0];
u.u32[1] = ((uint32*)addr)[1];
}
else if ((addr1 & (uintptr_t)1) == 0) {
u.u16[0] = ((uint16*)addr)[0];
u.u16[1] = ((uint16*)addr)[1];
u.u16[2] = ((uint16*)addr)[2];
u.u16[3] = ((uint16*)addr)[3];
}
else {
int32 t;
for (t = 0; t < 8; t++)
u.u8[t] = ((uint8*)addr)[t];
}
return u.val;
}
static inline float64
LOAD_F64(void *addr)
{
uintptr_t addr1 = (uintptr_t)addr;
union { float64 val; uint32 u32[2];
uint16 u16[4]; uint8 u8[8]; } u;
if ((addr1 & (uintptr_t)7) == 0)
return *(float64*)addr;
if ((addr1 & (uintptr_t)3) == 0) {
u.u32[0] = ((uint32*)addr)[0];
u.u32[1] = ((uint32*)addr)[1];
}
else if ((addr1 & (uintptr_t)1) == 0) {
u.u16[0] = ((uint16*)addr)[0];
u.u16[1] = ((uint16*)addr)[1];
u.u16[2] = ((uint16*)addr)[2];
u.u16[3] = ((uint16*)addr)[3];
}
else {
int32 t;
for (t = 0; t < 8; t++)
u.u8[t] = ((uint8*)addr)[t];
}
return u.val;
}
static inline int32
LOAD_I32(void *addr)
{
uintptr_t addr1 = (uintptr_t)addr;
union { int32 val; uint16 u16[2]; uint8 u8[4]; } u;
if ((addr1 & (uintptr_t)3) == 0)
return *(int32*)addr;
if ((addr1 & (uintptr_t)1) == 0) {
u.u16[0] = ((uint16*)addr)[0];
u.u16[1] = ((uint16*)addr)[1];
}
else {
u.u8[0] = ((uint8*)addr)[0];
u.u8[1] = ((uint8*)addr)[1];
u.u8[2] = ((uint8*)addr)[2];
u.u8[3] = ((uint8*)addr)[3];
}
return u.val;
}
static inline int16
LOAD_I16(void *addr)
{
union { int16 val; uint8 u8[2]; } u;
u.u8[0] = ((uint8*)addr)[0];
u.u8[1] = ((uint8*)addr)[1];
return u.val;
}
#define LOAD_U32(addr) ((uint32)LOAD_I32(addr))
#define LOAD_U16(addr) ((uint16)LOAD_I16(addr))
#define LOAD_F32(addr) ((float32)LOAD_I32(addr))
#endif /* WASM_CPU_SUPPORTS_UNALIGNED_64BIT_ACCESS != 0 */
#define CHECK_MEMORY_OVERFLOW() do { \
uint64 offset1 = offset + addr; \
/* if (flags != 2) \
LOG_VERBOSE("unaligned load/store in wasm interp, flag: %d.\n", flags); */\
/* The WASM spec doesn't require that the dynamic address operand must be \
unsigned, so we don't check whether integer overflow or not here. */ \
/* if (offset1 < offset) \
goto out_of_bounds; */ \
if (offset1 + LOAD_SIZE[opcode - WASM_OP_I32_LOAD] <= memory_data_size) { \
/* If offset1 is in valid range, maddr must also be in valid range, \
no need to check it again. */ \
maddr = memory->memory_data + offset1; \
} \
else if (offset1 > DEFAULT_APP_HEAP_BASE_OFFSET \
&& (offset1 + LOAD_SIZE[opcode - WASM_OP_I32_LOAD] <= \
DEFAULT_APP_HEAP_BASE_OFFSET + heap_data_size)) { \
/* If offset1 is in valid range, maddr must also be in valid range, \
no need to check it again. */ \
maddr = memory->heap_data + offset1 - DEFAULT_APP_HEAP_BASE_OFFSET; \
} \
else \
goto out_of_bounds; \
} while (0)
#define CHECK_MEMORY_OVERFLOW_FAST(bytes) do { \
uint64 offset1 = offset + addr; \
/* if (flags != 2) \
LOG_VERBOSE("unaligned load/store in wasm interp, flag: %d.\n", flags); */\
/* The WASM spec doesn't require that the dynamic address operand must be \
unsigned, so we don't check whether integer overflow or not here. */ \
/* if (offset1 < offset) \
goto out_of_bounds; */ \
if (offset1 + bytes <= memory_data_size) { \
/* If offset1 is in valid range, maddr must also be in valid range, \
no need to check it again. */ \
maddr = memory->memory_data + offset1; \
} \
else if (offset1 > DEFAULT_APP_HEAP_BASE_OFFSET \
&& (offset1 + bytes <= \
DEFAULT_APP_HEAP_BASE_OFFSET + heap_data_size)) { \
/* If offset1 is in valid range, maddr must also be in valid range, \
no need to check it again. */ \
maddr = memory->heap_data + offset1 - DEFAULT_APP_HEAP_BASE_OFFSET; \
} \
else \
goto out_of_bounds; \
} while (0)
static inline uint32
rotl32(uint32 n, uint32 c)
{
const uint32 mask = (31);
c = c % 32;
c &= mask;
return (n<<c) | (n>>( (-c)&mask ));
}
static inline uint32
rotr32(uint32 n, uint32 c)
{
const uint32 mask = (31);
c = c % 32;
c &= mask;
return (n>>c) | (n<<( (-c)&mask ));
}
static inline uint64
rotl64(uint64 n, uint64 c)
{
const uint64 mask = (63);
c = c % 64;
c &= mask;
return (n<<c) | (n>>( (-c)&mask ));
}
static inline uint64
rotr64(uint64 n, uint64 c)
{
const uint64 mask = (63);
c = c % 64;
c &= mask;
return (n>>c) | (n<<( (-c)&mask ));
}
static inline double
wa_fmax(double a, double b)
{
double c = fmax(a, b);
if (c==0 && a==b)
return signbit(a) ? b : a;
return c;
}
static inline double
wa_fmin(double a, double b)
{
double c = fmin(a, b);
if (c==0 && a==b)
return signbit(a) ? a : b;
return c;
}
static inline uint32
clz32(uint32 type)
{
uint32 num = 0;
if (type == 0)
return 32;
while (!(type & 0x80000000)) {
num++;
type <<= 1;
}
return num;
}
static inline uint32
clz64(uint64 type)
{
uint32 num = 0;
if (type == 0)
return 64;
while (!(type & 0x8000000000000000LL)) {
num++;
type <<= 1;
}
return num;
}
static inline uint32
ctz32(uint32 type)
{
uint32 num = 0;
if (type == 0)
return 32;
while (!(type & 1)) {
num++;
type >>= 1;
}
return num;
}
static inline uint32
ctz64(uint64 type)
{
uint32 num = 0;
if (type == 0)
return 64;
while (!(type & 1)) {
num++;
type >>= 1;
}
return num;
}
static inline uint32
popcount32(uint32 u)
{
uint32 ret = 0;
while (u) {
u = (u & (u - 1));
ret++;
}
return ret;
}
static inline uint32
popcount64(uint64 u)
{
uint32 ret = 0;
while (u) {
u = (u & (u - 1));
ret++;
}
return ret;
}
static uint64
read_leb(const uint8 *buf, uint32 *p_offset, uint32 maxbits, bool sign)
{
uint64 result = 0;
uint32 shift = 0;
uint32 bcnt = 0;
uint64 byte;
while (true) {
byte = buf[*p_offset];
*p_offset += 1;
result |= ((byte & 0x7f) << shift);
shift += 7;
if ((byte & 0x80) == 0) {
break;
}
bcnt += 1;
}
if (sign && (shift < maxbits) && (byte & 0x40)) {
/* Sign extend */
result |= - ((uint64)1 << shift);
}
return result;
}
#define read_leb_uint32(p, p_end, res) do { \
uint8 _val = *p; \
if (!(_val & 0x80)) { \
res = _val; \
p++; \
break; \
} \
uint32 _off = 0; \
res = (uint32)read_leb(p, &_off, 32, false); \
p += _off; \
} while (0)
#define GET_LOCAL_INDEX_TYPE_AND_OFFSET() do { \
uint32 param_count = cur_func->param_count; \
read_leb_uint32(frame_ip, frame_ip_end, local_idx); \
bh_assert(local_idx < param_count + cur_func->local_count); \
local_offset = cur_func->local_offsets[local_idx]; \
if (local_idx < param_count) \
local_type = cur_func->param_types[local_idx]; \
else \
local_type = cur_func->local_types[local_idx - param_count]; \
} while (0)
#define GET_OFFSET() (frame_ip += 2, *(int16 *)(frame_ip - 2))
#define SET_OPERAND(type, off, value) \
(*(type*)(frame_lp + *(int16*)(frame_ip + off))) = value
#define GET_OPERAND(type, off) (*(type*)(frame_lp + *(int16*)(frame_ip + off)))
#define PUSH_I32(value) do { \
*(int32*)(frame_lp + GET_OFFSET()) = value; \
} while (0)
#define PUSH_F32(value) do { \
*(float32*)(frame_lp + GET_OFFSET()) = value; \
} while (0)
#define PUSH_I64(value) do { \
*(int64*)(frame_lp + GET_OFFSET()) = value; \
} while (0)
#define PUSH_F64(value) do { \
*(float64*)(frame_lp + GET_OFFSET()) = value; \
} while (0)
#define POP_I32() (*(int32*)(frame_lp + GET_OFFSET()))
#define POP_F32() (*(float32*)(frame_lp + GET_OFFSET()))
#define POP_I64() (*(int64*)(frame_lp + GET_OFFSET()))
#define POP_F64() (*(float64*)(frame_lp + GET_OFFSET()))
#define SYNC_ALL_TO_FRAME() do { \
frame->ip = frame_ip; \
} while (0)
#define UPDATE_ALL_FROM_FRAME() do { \
frame_ip = frame->ip; \
} while (0)
#define RECOVER_CONTEXT(new_frame) do { \
frame = (new_frame); \
cur_func = frame->function; \
prev_frame = frame->prev_frame; \
frame_ip = frame->ip; \
frame_lp = frame->lp; \
} while (0)
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define GET_OPCODE() opcode = *(frame_ip++);
#else
#define GET_OPCODE() (void)0
#endif
#define DEF_OP_EQZ(ctype, src_op_type) do { \
SET_OPERAND(int32, 2, (GET_OPERAND(ctype, 0) == 0)); \
frame_ip += 4; \
} while (0)
#define DEF_OP_CMP(src_type, src_op_type, cond) do { \
SET_OPERAND(uint32, 4, GET_OPERAND(src_type, 2) cond \
GET_OPERAND(src_type, 0)); \
frame_ip += 6; \
} while (0)
#define DEF_OP_BIT_COUNT(src_type, src_op_type, operation) do { \
SET_OPERAND(src_type, 2, \
(src_type)operation(GET_OPERAND(src_type, 0))); \
frame_ip += 4; \
} while (0)
#define DEF_OP_NUMERIC(src_type1, src_type2, src_op_type, operation) do { \
SET_OPERAND(src_type1, 4, (GET_OPERAND(src_type1, 2) \
operation GET_OPERAND(src_type1, 0))); \
frame_ip += 6; \
} while (0)
#define DEF_OP_REINTERPRET(src_type) do { \
SET_OPERAND(src_type, 2, GET_OPERAND(src_type, 0)); \
frame_ip += 4; \
} while (0)
#if WASM_CPU_SUPPORTS_UNALIGNED_64BIT_ACCESS != 0
#define DEF_OP_NUMERIC_64 DEF_OP_NUMERIC
#else
#define DEF_OP_NUMERIC_64(src_type1, src_type2, src_op_type, operation) do { \
src_type1 val1; \
src_type2 val2; \
val1 = \
(src_type1)GET_##src_op_type##_FROM_ADDR(frame_lp + (*(int16*)(frame_ip + 2))); \
val2 = \
(src_type2)GET_##src_op_type##_FROM_ADDR(frame_lp + (*(int16*)(frame_ip))); \
val1 operation##= val2; \
PUT_##src_op_type##_TO_ADDR(frame_lp + (*(int16*)(frame_ip + 4)), val1); \
frame_ip += 6; \
} while (0)
#endif
#define DEF_OP_NUMERIC2(src_type1, src_type2, src_op_type, operation) do { \
SET_OPERAND(src_type1, 4, (GET_OPERAND(src_type1, 2) \
operation (GET_OPERAND(src_type1, 0) % 32))); \
frame_ip += 6; \
} while (0)
#define DEF_OP_NUMERIC2_64(src_type1, src_type2, src_op_type, operation) do { \
SET_OPERAND(src_type1, 4, (GET_OPERAND(src_type1, 2) \
operation (GET_OPERAND(src_type1, 0) % 64))); \
frame_ip += 6; \
} while (0)
#define DEF_OP_MATH(src_type, src_op_type, method) do { \
SET_OPERAND(src_type, 2, method(GET_OPERAND(src_type, 0))); \
frame_ip += 4; \
} while (0)
#define DEF_OP_TRUNC(dst_type, dst_op_type, src_type, src_op_type, \
min_cond, max_cond) do { \
src_type value = GET_OPERAND(src_type, 0); \
if (isnan(value)) { \
wasm_set_exception(module, "invalid conversion to integer"); \
goto got_exception; \
} \
else if (value min_cond || value max_cond) { \
wasm_set_exception(module, "integer overflow"); \
goto got_exception; \
} \
SET_OPERAND(dst_type, 2, value); \
frame_ip += 4; \
} while (0)
#define DEF_OP_CONVERT(dst_type, dst_op_type, \
src_type, src_op_type) do { \
dst_type value = (dst_type)(src_type)POP_##src_op_type(); \
PUSH_##dst_op_type(value); \
} while (0)
#define RECOVER_BR_INFO() do { \
uint16 stack_index, ret_cell_num; \
stack_index = *(uint16*)frame_ip; \
frame_ip += sizeof(uint16); \
ret_cell_num = *(uint8*)frame_ip; \
frame_ip += sizeof(uint8); \
if (ret_cell_num == 1) \
frame_lp[stack_index] = \
frame_lp[*(int16*)frame_ip]; \
else if (ret_cell_num == 2) { \
*(int64*)(frame_lp + stack_index) = \
*(int64*)(frame_lp + *(int16*)frame_ip);\
} \
frame_ip += sizeof(int16); \
frame_ip = *(uint8**)frame_ip; \
} while (0)
static inline int32
sign_ext_8_32(int8 val)
{
if (val & 0x80)
return (int32)val | (int32)0xffffff00;
return val;
}
static inline int32
sign_ext_16_32(int16 val)
{
if (val & 0x8000)
return (int32)val | (int32)0xffff0000;
return val;
}
static inline int64
sign_ext_8_64(int8 val)
{
if (val & 0x80)
return (int64)val | (int64)0xffffffffffffff00;
return val;
}
static inline int64
sign_ext_16_64(int16 val)
{
if (val & 0x8000)
return (int64)val | (int64)0xffffffffffff0000;
return val;
}
static inline int64
sign_ext_32_64(int32 val)
{
if (val & (int32)0x80000000)
return (int64)val | (int64)0xffffffff00000000;
return val;
}
static inline void
word_copy(uint32 *dest, uint32 *src, unsigned num)
{
for (; num > 0; num--)
*dest++ = *src++;
}
static inline WASMInterpFrame*
ALLOC_FRAME(WASMExecEnv *exec_env, uint32 size, WASMInterpFrame *prev_frame)
{
WASMInterpFrame *frame = wasm_exec_env_alloc_wasm_frame(exec_env, size);
if (frame)
frame->prev_frame = prev_frame;
else {
wasm_set_exception((WASMModuleInstance*)exec_env->module_inst,
"WASM interp failed: stack overflow.");
}
return frame;
}
static inline void
FREE_FRAME(WASMExecEnv *exec_env, WASMInterpFrame *frame)
{
wasm_exec_env_free_wasm_frame(exec_env, frame);
}
static void
wasm_interp_call_func_native(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
unsigned local_cell_num = 2;
WASMInterpFrame *frame;
uint32 argv_ret[2];
bool ret;
if (!(frame = ALLOC_FRAME(exec_env,
wasm_interp_interp_frame_size(local_cell_num),
prev_frame)))
return;
frame->function = cur_func;
frame->ip = NULL;
frame->lp = frame->operand;
wasm_exec_env_set_cur_frame(exec_env, frame);
if (!cur_func->u.func_import->func_ptr_linked) {
char buf[128];
snprintf(buf,
sizeof(buf), "fail to call unlinked import function (%s, %s)",
cur_func->u.func_import->module_name,
cur_func->u.func_import->field_name);
wasm_set_exception((WASMModuleInstance*)module_inst, buf);
return;
}
ret = wasm_runtime_invoke_native(exec_env, cur_func->u.func_import->func_ptr_linked,
cur_func->u.func_import->func_type,
cur_func->u.func_import->signature,
frame->lp, cur_func->param_cell_num, argv_ret);
if (!ret)
return;
if (cur_func->ret_cell_num == 1) {
prev_frame->lp[prev_frame->ret_offset] = argv_ret[0];
}
else if (cur_func->ret_cell_num == 2) {
*(int64*)(prev_frame->lp + prev_frame->ret_offset) = *(int64*)argv_ret;
}
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
}
#if WASM_ENABLE_LABELS_AS_VALUES != 0
//#define HANDLE_OP(opcode) HANDLE_##opcode:printf(#opcode"\n");h_##opcode
#define HANDLE_OP(opcode) HANDLE_##opcode
#if WASM_ENABLE_FAST_INTERP == 0
#define FETCH_OPCODE_AND_DISPATCH() goto *handle_table[*frame_ip++]
#else
#if WASM_ENABLE_ABS_LABEL_ADDR != 0
#define FETCH_OPCODE_AND_DISPATCH() do { \
const void *p_label_addr = *(void**)frame_ip; \
frame_ip += sizeof(void*); \
goto *p_label_addr; \
} while (0)
#else
#define FETCH_OPCODE_AND_DISPATCH() do { \
const void *p_label_addr = label_base \
+ *(int16*)frame_ip; \
frame_ip += sizeof(int16); \
goto *p_label_addr; \
} while (0)
#endif
#endif
#define HANDLE_OP_END() FETCH_OPCODE_AND_DISPATCH()
#else /* else of WASM_ENABLE_LABELS_AS_VALUES */
#define HANDLE_OP(opcode) case opcode
#define HANDLE_OP_END() continue
#endif /* end of WASM_ENABLE_LABELS_AS_VALUES */
#if WASM_ENABLE_FAST_INTERP != 0
static void *global_handle_table[WASM_INSTRUCTION_NUM] = { 0 };
#endif
static void
wasm_interp_call_func_bytecode(WASMModuleInstance *module,
WASMExecEnv *exec_env,
WASMFunctionInstance *cur_func,
WASMInterpFrame *prev_frame)
{
WASMMemoryInstance *memory = module->default_memory;
uint32 num_bytes_per_page = memory ? memory->num_bytes_per_page : 0;
uint32 memory_data_size = memory ? num_bytes_per_page * memory->cur_page_count : 0;
uint32 heap_data_size = memory ? (uint32)(memory->heap_data_end - memory->heap_data) : 0;
uint8 *global_data = memory ? memory->global_data : NULL;
WASMTableInstance *table = module->default_table;
WASMGlobalInstance *globals = module->globals;
uint8 opcode_IMPDEP = WASM_OP_IMPDEP;
WASMInterpFrame *frame = NULL;
/* Points to this special opcode so as to jump to the call_method_from_entry. */
register uint8 *frame_ip = &opcode_IMPDEP; /* cache of frame->ip */
register uint32 *frame_lp = NULL; /* cache of frame->lp */
#if WASM_ENABLE_ABS_LABEL_ADDR == 0
register uint8 *label_base = &&HANDLE_WASM_OP_UNREACHABLE; /* cache of label base addr */
#endif
WASMGlobalInstance *global;
uint8 *frame_ip_end;
uint8 opcode;
uint32 cond, count, fidx, tidx, frame_size = 0;
uint64 all_cell_num = 0;
int16 addr1, addr2, addr_ret;
int32 didx, val;
uint8 *maddr = NULL;
uint32 local_idx, local_offset, global_idx;
uint8 local_type, *global_addr;
#if WASM_ENABLE_LABELS_AS_VALUES != 0
#define HANDLE_OPCODE(op) &&HANDLE_##op
DEFINE_GOTO_TABLE (handle_table);
#undef HANDLE_OPCODE
#if WASM_ENABLE_FAST_INTERP != 0
if (exec_env == NULL) {
bh_memcpy_s(global_handle_table, sizeof(void*) * WASM_INSTRUCTION_NUM,
handle_table, sizeof(void*) * WASM_INSTRUCTION_NUM);
return;
}
#endif
#endif
/* Size of memory load.
This starts with the first memory load operator at opcode 0x28 */
uint32 LOAD_SIZE[] = {
4, 8, 4, 8, 1, 1, 2, 2, 1, 1, 2, 2, 4, 4, /* loads */
4, 8, 4, 8, 1, 2, 1, 2, 4 }; /* stores */
#if WASM_ENABLE_LABELS_AS_VALUES == 0
while (frame_ip < frame_ip_end) {
opcode = *frame_ip++;
switch (opcode) {
#else
goto *handle_table[WASM_OP_IMPDEP];
#endif
/* control instructions */
HANDLE_OP (WASM_OP_UNREACHABLE):
wasm_set_exception(module, "unreachable");
goto got_exception;
HANDLE_OP (WASM_OP_IF):
cond = (uint32)POP_I32();
if (cond == 0) {
if (*(uint8**)frame_ip == NULL) {
frame_ip = *(uint8**)(frame_ip + sizeof(uint8*));
}
else {
frame_ip = *(uint8**)(frame_ip);
}
}
else {
frame_ip += sizeof(uint8*) * 2;
}
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_ELSE):
frame_ip = *(uint8**)(frame_ip);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_BR):
RECOVER_BR_INFO();
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_BR_IF):
cond = frame_lp[GET_OFFSET()];
if (cond)
RECOVER_BR_INFO();
else {
frame_ip += (2 + 1 + 2 + sizeof(uint8*));
}
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_BR_TABLE):
count = GET_OPERAND(uint32, 0);
didx = GET_OPERAND(uint32, 2);
frame_ip += 4;
if (!(didx >= 0 && (uint32)didx < count))
didx = count;
frame_ip += (didx * ((2 + 1 + 2 + sizeof(uint8*))));
RECOVER_BR_INFO();
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_RETURN):
if (cur_func->ret_cell_num == 2) {
*((uint64 *)(prev_frame->lp + prev_frame->ret_offset)) =
GET_OPERAND(uint64, 0);
} else if (cur_func->ret_cell_num == 1) {
prev_frame->lp[prev_frame->ret_offset] = GET_OPERAND(int32, 0);;
}
goto return_func;
HANDLE_OP (WASM_OP_CALL):
fidx = frame_lp[GET_OFFSET()];
bh_assert(fidx < module->function_count);
cur_func = module->functions + fidx;
goto call_func_from_interp;
HANDLE_OP (WASM_OP_CALL_INDIRECT):
{
WASMType *cur_type, *cur_func_type;
tidx = GET_OPERAND(int32, 0);
val = GET_OPERAND(int32, 2);
frame_ip += 4;
if (tidx >= module->module->type_count) {
wasm_set_exception(module, "type index is overflow");
goto got_exception;
}
cur_type = module->module->types[tidx];
if (val < 0 || val >= (int32)table->cur_size) {
wasm_set_exception(module, "undefined element");
goto got_exception;
}
fidx = ((uint32*)table->base_addr)[val];
if (fidx == (uint32)-1) {
wasm_set_exception(module, "uninitialized element");
goto got_exception;
}
cur_func = module->functions + fidx;
if (cur_func->is_import_func)
cur_func_type = cur_func->u.func_import->func_type;
else
cur_func_type = cur_func->u.func->func_type;
if (!wasm_type_equal(cur_type, cur_func_type)) {
wasm_set_exception(module, "indirect call type mismatch");
goto got_exception;
}
goto call_func_from_interp;
}
/* parametric instructions */
HANDLE_OP (WASM_OP_SELECT):
{
cond = frame_lp[GET_OFFSET()];
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
if (!cond)
frame_lp[addr_ret] = frame_lp[addr1];
else
frame_lp[addr_ret] = frame_lp[addr2];
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_SELECT_64):
{
cond = frame_lp[GET_OFFSET()];
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
if (!cond)
*(int64*)(frame_lp + addr_ret) = *(int64*)(frame_lp + addr1);
else
*(int64*)(frame_lp + addr_ret) = *(int64*)(frame_lp + addr2);
HANDLE_OP_END ();
}
/* variable instructions */
HANDLE_OP (EXT_OP_SET_LOCAL_FAST):
HANDLE_OP (EXT_OP_TEE_LOCAL_FAST):
{
local_offset = *frame_ip++;
*(int32*)(frame_lp + local_offset) = GET_OPERAND(uint32, 0);
frame_ip += 2;
HANDLE_OP_END ();
}
HANDLE_OP (EXT_OP_SET_LOCAL_FAST_I64):
HANDLE_OP (EXT_OP_TEE_LOCAL_FAST_I64):
{
local_offset = *frame_ip++;
PUT_I64_TO_ADDR((uint32*)(frame_lp + local_offset), GET_OPERAND(uint64, 0));
frame_ip += 2;
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_GET_GLOBAL):
{
global_idx = frame_lp[GET_OFFSET()];
addr_ret = GET_OFFSET();
bh_assert(global_idx < module->global_count);
global = globals + global_idx;
global_addr = global_data + global->data_offset;
switch (global->type) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
frame_lp[addr_ret] = *(uint32*)global_addr;
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
*(uint64 *)(frame_lp + addr_ret) = GET_I64_FROM_ADDR((uint32*)global_addr);
break;
default:
wasm_set_exception(module, "invalid global type");
goto got_exception;
}
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_SET_GLOBAL):
{
global_idx = frame_lp[GET_OFFSET()];
addr1 = GET_OFFSET();
bh_assert(global_idx < module->global_count);
global = globals + global_idx;
global_addr = global_data + global->data_offset;
switch (global->type) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
*(int32*)global_addr = frame_lp[addr1];
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
PUT_I64_TO_ADDR((uint32*)global_addr, *(int64 *)(frame_lp + addr1));
break;
default:
wasm_set_exception(module, "invalid global type");
goto got_exception;
}
HANDLE_OP_END ();
}
/* memory load instructions */
HANDLE_OP (WASM_OP_I32_LOAD):
{
uint32 offset, addr;
offset = GET_OPERAND(uint32, 1);
addr = GET_OPERAND(uint32, 3);
frame_ip += 5;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW_FAST(4);
frame_lp[addr_ret] = LOAD_I32(maddr);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_LOAD):
HANDLE_OP (WASM_OP_F32_LOAD):
HANDLE_OP (WASM_OP_F64_LOAD):
HANDLE_OP (WASM_OP_I32_LOAD8_S):
HANDLE_OP (WASM_OP_I32_LOAD8_U):
HANDLE_OP (WASM_OP_I32_LOAD16_S):
HANDLE_OP (WASM_OP_I32_LOAD16_U):
HANDLE_OP (WASM_OP_I64_LOAD8_S):
HANDLE_OP (WASM_OP_I64_LOAD8_U):
HANDLE_OP (WASM_OP_I64_LOAD16_S):
HANDLE_OP (WASM_OP_I64_LOAD16_U):
HANDLE_OP (WASM_OP_I64_LOAD32_S):
HANDLE_OP (WASM_OP_I64_LOAD32_U):
{
uint32 offset, flags, addr;
GET_OPCODE();
offset = GET_OPERAND(uint32, 0);
addr = GET_OPERAND(int32, 2);
frame_ip += 4;
addr_ret = GET_OFFSET();
CHECK_MEMORY_OVERFLOW();
#if WASM_ENABLE_LABELS_AS_VALUES != 0
static const void *handle_load_table[] = {
&&HANDLE_LOAD_WASM_OP_I32_LOAD,
&&HANDLE_LOAD_WASM_OP_I64_LOAD,
&&HANDLE_LOAD_WASM_OP_F32_LOAD,
&&HANDLE_LOAD_WASM_OP_F64_LOAD,
&&HANDLE_LOAD_WASM_OP_I32_LOAD8_S,
&&HANDLE_LOAD_WASM_OP_I32_LOAD8_U,
&&HANDLE_LOAD_WASM_OP_I32_LOAD16_S,
&&HANDLE_LOAD_WASM_OP_I32_LOAD16_U,
&&HANDLE_LOAD_WASM_OP_I64_LOAD8_S,
&&HANDLE_LOAD_WASM_OP_I64_LOAD8_U,
&&HANDLE_LOAD_WASM_OP_I64_LOAD16_S,
&&HANDLE_LOAD_WASM_OP_I64_LOAD16_U,
&&HANDLE_LOAD_WASM_OP_I64_LOAD32_S,
&&HANDLE_LOAD_WASM_OP_I64_LOAD32_U
};
#define HANDLE_OP_LOAD(opcode) HANDLE_LOAD_##opcode
goto *handle_load_table[opcode - WASM_OP_I32_LOAD];
#else
#define HANDLE_OP_LOAD(opcode) case opcode
switch (opcode)
#endif
{
HANDLE_OP_LOAD(WASM_OP_I32_LOAD):
frame_lp[addr_ret] = LOAD_I32(maddr);
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD):
*(int64 *)(frame_lp + addr_ret) = (LOAD_I64(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_F32_LOAD):
*(float32 *)(frame_lp + addr_ret) = (LOAD_F32(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_F64_LOAD):
*(float64 *)(frame_lp + addr_ret) = (LOAD_F64(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I32_LOAD8_S):
frame_lp[addr_ret] = sign_ext_8_32(*(int8*)maddr);
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I32_LOAD8_U):
frame_lp[addr_ret] = (uint32)(*(uint8*)maddr);
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I32_LOAD16_S):
frame_lp[addr_ret] = sign_ext_16_32(LOAD_I16(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I32_LOAD16_U):
frame_lp[addr_ret] = (uint32)(LOAD_U16(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD8_S):
*(int64 *)(frame_lp + addr_ret) = sign_ext_8_64(*(int8*)maddr);
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD8_U):
*(int64 *)(frame_lp + addr_ret) = (uint64)(*(uint8*)maddr);
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD16_S):
*(int64 *)(frame_lp + addr_ret) = sign_ext_16_64(LOAD_I16(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD16_U):
*(int64 *)(frame_lp + addr_ret) = (uint64)(LOAD_U16(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD32_S):
*(int64 *)(frame_lp + addr_ret) = sign_ext_32_64(LOAD_I32(maddr));
HANDLE_OP_END();
HANDLE_OP_LOAD(WASM_OP_I64_LOAD32_U):
*(int64 *)(frame_lp + addr_ret) = (uint64)(LOAD_U32(maddr));
HANDLE_OP_END();
}
(void)flags;
HANDLE_OP_END ();
}
/* memory store instructions */
HANDLE_OP (WASM_OP_F32_STORE):
{
uint32 offset, addr;
GET_OPCODE();
offset = GET_OPERAND(uint32, 0);
val = GET_OPERAND(int32, 2);
addr = GET_OPERAND(int32, 4);
frame_ip += 6;
CHECK_MEMORY_OVERFLOW_FAST(4);
STORE_U32(maddr, val);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F64_STORE):
{
uint32 offset, addr;
int32 val_offset;
GET_OPCODE();
offset = GET_OPERAND(uint32, 0);
frame_ip += 2;
val_offset = GET_OFFSET();
addr2 = GET_OFFSET();
addr = (uint32)frame_lp[addr2];
CHECK_MEMORY_OVERFLOW_FAST(8);
STORE_U32(maddr, frame_lp[val_offset]);
STORE_U32(maddr + 4, frame_lp[val_offset + 1]);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_STORE):
{
uint32 offset, addr;
uint32 sval;
offset = GET_OPERAND(uint32, 1);
sval = GET_OPERAND(uint32, 3);
addr = GET_OPERAND(uint32, 5);
frame_ip += 7;
CHECK_MEMORY_OVERFLOW_FAST(4);
STORE_U32(maddr, sval);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_STORE8):
HANDLE_OP (WASM_OP_I32_STORE16):
{
uint32 offset, addr;
uint32 sval;
GET_OPCODE();
offset = GET_OPERAND(uint32, 0);
sval = GET_OPERAND(uint32, 2);
addr = GET_OPERAND(uint32, 4);
frame_ip += 6;
CHECK_MEMORY_OVERFLOW();
switch (opcode) {
case WASM_OP_I32_STORE8:
*(uint8*)maddr = (uint8)sval;
break;
case WASM_OP_I32_STORE16:
STORE_U16(maddr, (uint16)sval);
break;
}
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_STORE):
HANDLE_OP (WASM_OP_I64_STORE8):
HANDLE_OP (WASM_OP_I64_STORE16):
HANDLE_OP (WASM_OP_I64_STORE32):
{
uint32 offset, addr;
uint64 sval;
GET_OPCODE();
offset = GET_OPERAND(uint32, 0);
sval = GET_OPERAND(uint64, 2);
addr = GET_OPERAND(uint32, 4);
frame_ip += 6;
CHECK_MEMORY_OVERFLOW();
switch (opcode) {
case WASM_OP_I64_STORE:
STORE_I64(maddr, sval);
break;
case WASM_OP_I64_STORE8:
*(uint8*)maddr = (uint8)sval;
break;
case WASM_OP_I64_STORE16:
STORE_U16(maddr, (uint16)sval);
break;
case WASM_OP_I64_STORE32:
STORE_U32(maddr, (uint32)sval);
break;
}
HANDLE_OP_END ();
}
/* memory size and memory grow instructions */
HANDLE_OP (WASM_OP_MEMORY_SIZE):
{
uint32 reserved;
addr_ret = GET_OFFSET();
frame_lp[addr_ret] = memory->cur_page_count;
(void)reserved;
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_MEMORY_GROW):
{
uint32 reserved, delta, prev_page_count = memory->cur_page_count;
addr1 = GET_OFFSET();
addr_ret = GET_OFFSET();
delta = (uint32)frame_lp[addr1];
if (!wasm_enlarge_memory(module, delta)) {
/* fail to memory.grow, return -1 */
frame_lp[addr_ret] = -1;
if (wasm_get_exception(module)) {
bh_printf("%s\n", wasm_get_exception(module));
wasm_set_exception(module, NULL);
}
}
else {
/* success, return previous page count */
frame_lp[addr_ret] = prev_page_count;
/* update the memory instance ptr */
memory = module->default_memory;
memory_data_size = num_bytes_per_page * memory->cur_page_count;
global_data = memory->global_data;
}
(void)reserved;
HANDLE_OP_END ();
}
/* comparison instructions of i32 */
HANDLE_OP (WASM_OP_I32_EQZ):
DEF_OP_EQZ(int32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_EQ):
DEF_OP_CMP(uint32, I32, ==);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_NE):
DEF_OP_CMP(uint32, I32, !=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_LT_S):
DEF_OP_CMP(int32, I32, <);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_LT_U):
DEF_OP_CMP(uint32, I32, <);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_GT_S):
DEF_OP_CMP(int32, I32, >);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_GT_U):
DEF_OP_CMP(uint32, I32, >);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_LE_S):
DEF_OP_CMP(int32, I32, <=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_LE_U):
DEF_OP_CMP(uint32, I32, <=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_GE_S):
DEF_OP_CMP(int32, I32, >=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_GE_U):
DEF_OP_CMP(uint32, I32, >=);
HANDLE_OP_END ();
/* comparison instructions of i64 */
HANDLE_OP (WASM_OP_I64_EQZ):
DEF_OP_EQZ(int64, I64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_EQ):
DEF_OP_CMP(uint64, I64, ==);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_NE):
DEF_OP_CMP(uint64, I64, !=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_LT_S):
DEF_OP_CMP(int64, I64, <);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_LT_U):
DEF_OP_CMP(uint64, I64, <);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_GT_S):
DEF_OP_CMP(int64, I64, >);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_GT_U):
DEF_OP_CMP(uint64, I64, >);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_LE_S):
DEF_OP_CMP(int64, I64, <=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_LE_U):
DEF_OP_CMP(uint64, I64, <=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_GE_S):
DEF_OP_CMP(int64, I64, >=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_GE_U):
DEF_OP_CMP(uint64, I64, >=);
HANDLE_OP_END ();
/* comparison instructions of f32 */
HANDLE_OP (WASM_OP_F32_EQ):
DEF_OP_CMP(float32, F32, ==);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_NE):
DEF_OP_CMP(float32, F32, !=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_LT):
DEF_OP_CMP(float32, F32, <);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_GT):
DEF_OP_CMP(float32, F32, >);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_LE):
DEF_OP_CMP(float32, F32, <=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_GE):
DEF_OP_CMP(float32, F32, >=);
HANDLE_OP_END ();
/* comparison instructions of f64 */
HANDLE_OP (WASM_OP_F64_EQ):
DEF_OP_CMP(float64, F64, ==);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_NE):
DEF_OP_CMP(float64, F64, !=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_LT):
DEF_OP_CMP(float64, F64, <);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_GT):
DEF_OP_CMP(float64, F64, >);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_LE):
DEF_OP_CMP(float64, F64, <=);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_GE):
DEF_OP_CMP(float64, F64, >=);
HANDLE_OP_END ();
/* numberic instructions of i32 */
HANDLE_OP (WASM_OP_I32_CLZ):
DEF_OP_BIT_COUNT(uint32, I32, clz32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_CTZ):
DEF_OP_BIT_COUNT(uint32, I32, ctz32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_POPCNT):
DEF_OP_BIT_COUNT(uint32, I32, popcount32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_ADD):
DEF_OP_NUMERIC(uint32, uint32, I32, +);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_SUB):
DEF_OP_NUMERIC(uint32, uint32, I32, -);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_MUL):
DEF_OP_NUMERIC(uint32, uint32, I32, *);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_DIV_S):
{
int32 a, b;
b = frame_lp[GET_OFFSET()];
a = frame_lp[GET_OFFSET()];
addr_ret = GET_OFFSET();
if (a == (int32)0x80000000 && b == -1) {
wasm_set_exception(module, "integer overflow");
goto got_exception;
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a / b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_DIV_U):
{
uint32 a, b;
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
b = (uint32)frame_lp[addr1];
a = (uint32)frame_lp[addr2];
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a / b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_REM_S):
{
int32 a, b;
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
b = frame_lp[addr1];
a = frame_lp[addr2];
if (a == (int32)0x80000000 && b == -1) {
frame_lp[addr_ret] = 0;
HANDLE_OP_END ();
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a % b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_REM_U):
{
uint32 a, b;
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
addr_ret = GET_OFFSET();
b = (uint32)frame_lp[addr1];
a = (uint32)frame_lp[addr2];
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
frame_lp[addr_ret] = (a % b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_AND):
DEF_OP_NUMERIC(uint32, uint32, I32, &);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_OR):
DEF_OP_NUMERIC(uint32, uint32, I32, |);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_XOR):
DEF_OP_NUMERIC(uint32, uint32, I32, ^);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_SHL):
{
#if defined(BUILD_TARGET_X86_64) || defined(BUILD_TARGET_X86_32)
DEF_OP_NUMERIC(uint32, uint32, I32, <<);
#else
DEF_OP_NUMERIC2(uint32, uint32, I32, <<);
#endif
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_SHR_S):
{
#if defined(BUILD_TARGET_X86_64) || defined(BUILD_TARGET_X86_32)
DEF_OP_NUMERIC(int32, uint32, I32, >>);
#else
DEF_OP_NUMERIC2(int32, uint32, I32, >>);
#endif
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_SHR_U):
{
#if defined(BUILD_TARGET_X86_64) || defined(BUILD_TARGET_X86_32)
DEF_OP_NUMERIC(uint32, uint32, I32, >>);
#else
DEF_OP_NUMERIC2(uint32, uint32, I32, >>);
#endif
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_ROTL):
{
uint32 a, b;
b = (uint32)frame_lp[GET_OFFSET()];
a = (uint32)frame_lp[GET_OFFSET()];
frame_lp[GET_OFFSET()] = rotl32(a, b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_ROTR):
{
uint32 a, b;
b = (uint32)frame_lp[GET_OFFSET()];
a = (uint32)frame_lp[GET_OFFSET()];
frame_lp[GET_OFFSET()] = rotr32(a, b);
HANDLE_OP_END ();
}
/* numberic instructions of i64 */
HANDLE_OP (WASM_OP_I64_CLZ):
DEF_OP_BIT_COUNT(uint64, I64, clz64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_CTZ):
DEF_OP_BIT_COUNT(uint64, I64, ctz64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_POPCNT):
DEF_OP_BIT_COUNT(uint64, I64, popcount64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_ADD):
DEF_OP_NUMERIC_64(uint64, uint64, I64, +);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_SUB):
DEF_OP_NUMERIC_64(uint64, uint64, I64, -);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_MUL):
DEF_OP_NUMERIC_64(uint64, uint64, I64, *);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_DIV_S):
{
int64 a, b;
b = *(int64*)(frame_lp + GET_OFFSET());
a = *(int64*)(frame_lp + GET_OFFSET());
if (a == (int64)0x8000000000000000LL && b == -1) {
wasm_set_exception(module, "integer overflow");
goto got_exception;
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
*(int64*)(frame_lp + GET_OFFSET()) = (a / b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_DIV_U):
{
uint64 a, b;
b = *(uint64*)(frame_lp + GET_OFFSET());
a = *(uint64*)(frame_lp + GET_OFFSET());
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
*(uint64*)(frame_lp + GET_OFFSET()) = (a / b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_REM_S):
{
int64 a, b;
b = *(int64*)(frame_lp + GET_OFFSET());
a = *(int64*)(frame_lp + GET_OFFSET());
if (a == (int64)0x8000000000000000LL && b == -1) {
*(int64*)(frame_lp + GET_OFFSET()) = 0;
HANDLE_OP_END ();
}
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
*(int64*)(frame_lp + GET_OFFSET()) = (a % b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_REM_U):
{
uint64 a, b;
b = *(uint64*)(frame_lp + GET_OFFSET());
a = *(uint64*)(frame_lp + GET_OFFSET());
if (b == 0) {
wasm_set_exception(module, "integer divide by zero");
goto got_exception;
}
*(uint64*)(frame_lp + GET_OFFSET()) = (a % b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_AND):
DEF_OP_NUMERIC_64(uint64, uint64, I64, &);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_OR):
DEF_OP_NUMERIC_64(uint64, uint64, I64, |);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_XOR):
DEF_OP_NUMERIC_64(uint64, uint64, I64, ^);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_SHL):
{
#if defined(BUILD_TARGET_X86_64) || defined(BUILD_TARGET_X86_32)
DEF_OP_NUMERIC_64(uint64, uint64, I64, <<);
#else
DEF_OP_NUMERIC2_64(uint64, uint64, I64, <<);
#endif
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_SHR_S):
{
#if defined(BUILD_TARGET_X86_64) || defined(BUILD_TARGET_X86_32)
DEF_OP_NUMERIC_64(int64, uint64, I64, >>);
#else
DEF_OP_NUMERIC2_64(int64, uint64, I64, >>);
#endif
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_SHR_U):
{
#if defined(BUILD_TARGET_X86_64) || defined(BUILD_TARGET_X86_32)
DEF_OP_NUMERIC_64(uint64, uint64, I64, >>);
#else
DEF_OP_NUMERIC2_64(uint64, uint64, I64, >>);
#endif
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_ROTL):
{
uint64 a, b;
b = *(int64*)(frame_lp + GET_OFFSET());
a = *(int64*)(frame_lp + GET_OFFSET());
*(int64*)(frame_lp + GET_OFFSET()) = rotl64(a, b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I64_ROTR):
{
uint64 a, b;
b = *(uint64*)(frame_lp + GET_OFFSET());
a = *(uint64*)(frame_lp + GET_OFFSET());
*(uint64*)(frame_lp + GET_OFFSET()) = rotr64(a, b);
HANDLE_OP_END ();
}
/* numberic instructions of f32 */
HANDLE_OP (WASM_OP_F32_ABS):
DEF_OP_MATH(float32, F32, fabs);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_NEG):
{
int32 i32 = (int32)frame_lp[GET_OFFSET()];
addr_ret = GET_OFFSET();
int32 sign_bit = i32 & (1 << 31);
if (sign_bit)
frame_lp[addr_ret] = i32 & ~(1 << 31);
else
frame_lp[addr_ret] = (uint32)(i32 | (1 << 31));
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F32_CEIL):
DEF_OP_MATH(float32, F32, ceil);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_FLOOR):
DEF_OP_MATH(float32, F32, floor);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_TRUNC):
DEF_OP_MATH(float32, F32, trunc);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_NEAREST):
DEF_OP_MATH(float32, F32, rint);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_SQRT):
DEF_OP_MATH(float32, F32, sqrt);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_ADD):
DEF_OP_NUMERIC(float32, float32, F32, +);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_SUB):
DEF_OP_NUMERIC(float32, float32, F32, -);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_MUL):
DEF_OP_NUMERIC(float32, float32, F32, *);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_DIV):
DEF_OP_NUMERIC(float32, float32, F32, /);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_MIN):
{
float32 a, b;
b = *(float32*)(frame_lp + GET_OFFSET());
a = *(float32*)(frame_lp + GET_OFFSET());
if (isnan(a))
*(float32*)(frame_lp + GET_OFFSET()) = a;
else if (isnan(b))
*(float32*)(frame_lp + GET_OFFSET()) = b;
else
*(float32*)(frame_lp + GET_OFFSET()) = wa_fmin(a, b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F32_MAX):
{
float32 a, b;
b = *(float32*)(frame_lp + GET_OFFSET());
a = *(float32*)(frame_lp + GET_OFFSET());
if (isnan(a))
*(float32*)(frame_lp + GET_OFFSET()) = a;
else if (isnan(b))
*(float32*)(frame_lp + GET_OFFSET()) = b;
else
*(float32*)(frame_lp + GET_OFFSET()) = wa_fmax(a, b);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F32_COPYSIGN):
{
float32 a, b;
b = *(float32*)(frame_lp + GET_OFFSET());
a = *(float32*)(frame_lp + GET_OFFSET());
*(float32*)(frame_lp + GET_OFFSET()) = (signbit(b) ? -fabs(a) : fabs(a));
HANDLE_OP_END ();
}
/* numberic instructions of f64 */
HANDLE_OP (WASM_OP_F64_ABS):
DEF_OP_MATH(float64, F64, fabs);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_NEG):
{
int64 i64 = *(int64*)(frame_lp + GET_OFFSET());
int64 sign_bit = i64 & (((int64)1) << 63);
if (sign_bit)
*(int64*)(frame_lp + GET_OFFSET()) = (uint64)i64 & ~(((uint64)1) << 63);
else
*(int64*)(frame_lp + GET_OFFSET()) = (uint64)i64 | (((uint64)1) << 63);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F64_CEIL):
DEF_OP_MATH(float64, F64, ceil);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_FLOOR):
DEF_OP_MATH(float64, F64, floor);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_TRUNC):
DEF_OP_MATH(float64, F64, trunc);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_NEAREST):
DEF_OP_MATH(float64, F64, rint);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_SQRT):
DEF_OP_MATH(float64, F64, sqrt);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_ADD):
DEF_OP_NUMERIC_64(float64, float64, F64, +);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_SUB):
DEF_OP_NUMERIC_64(float64, float64, F64, -);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_MUL):
DEF_OP_NUMERIC_64(float64, float64, F64, *);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_DIV):
DEF_OP_NUMERIC_64(float64, float64, F64, /);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_MIN):
{
float64 a, b;
b = POP_F64();
a = POP_F64();
if (isnan(a))
PUSH_F64(a);
else if (isnan(b))
PUSH_F64(b);
else
PUSH_F64(wa_fmin(a, b));
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F64_MAX):
{
float64 a, b;
b = POP_F64();
a = POP_F64();
if (isnan(a))
PUSH_F64(a);
else if (isnan(b))
PUSH_F64(b);
else
PUSH_F64(wa_fmax(a, b));
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_F64_COPYSIGN):
{
float64 a, b;
b = POP_F64();
a = POP_F64();
PUSH_F64(signbit(b) ? -fabs(a) : fabs(a));
HANDLE_OP_END ();
}
/* conversions of i32 */
HANDLE_OP (WASM_OP_I32_WRAP_I64):
{
int32 value = (int32)(POP_I64() & 0xFFFFFFFFLL);
PUSH_I32(value);
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_I32_TRUNC_S_F32):
/* We don't use INT32_MIN/INT32_MAX/UINT32_MIN/UINT32_MAX,
since float/double values of ieee754 cannot precisely represent
all int32/uint32/int64/uint64 values, e.g.:
UINT32_MAX is 4294967295, but (float32)4294967295 is 4294967296.0f,
but not 4294967295.0f. */
DEF_OP_TRUNC(int32, I32, float32, F32, <= -2147483904.0f,
>= 2147483648.0f);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_TRUNC_U_F32):
DEF_OP_TRUNC(uint32, I32, float32, F32, <= -1.0f,
>= 4294967296.0f);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_TRUNC_S_F64):
DEF_OP_TRUNC(int32, I32, float64, F64, <= -2147483649.0,
>= 2147483648.0);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I32_TRUNC_U_F64):
DEF_OP_TRUNC(uint32, I32, float64, F64, <= -1.0 ,
>= 4294967296.0);
HANDLE_OP_END ();
/* conversions of i64 */
HANDLE_OP (WASM_OP_I64_EXTEND_S_I32):
DEF_OP_CONVERT(int64, I64, int32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_EXTEND_U_I32):
DEF_OP_CONVERT(int64, I64, uint32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_TRUNC_S_F32):
DEF_OP_TRUNC(int64, I64, float32, F32, <= -9223373136366403584.0f,
>= 9223372036854775808.0f);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_TRUNC_U_F32):
DEF_OP_TRUNC(uint64, I64, float32, F32, <= -1.0f,
>= 18446744073709551616.0f);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_TRUNC_S_F64):
DEF_OP_TRUNC(int64, I64, float64, F64, <= -9223372036854777856.0,
>= 9223372036854775808.0);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_TRUNC_U_F64):
DEF_OP_TRUNC(uint64, I64, float64, F64, <= -1.0,
>= 18446744073709551616.0);
HANDLE_OP_END ();
/* conversions of f32 */
HANDLE_OP (WASM_OP_F32_CONVERT_S_I32):
DEF_OP_CONVERT(float32, F32, int32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_CONVERT_U_I32):
DEF_OP_CONVERT(float32, F32, uint32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_CONVERT_S_I64):
DEF_OP_CONVERT(float32, F32, int64, I64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_CONVERT_U_I64):
DEF_OP_CONVERT(float32, F32, uint64, I64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_DEMOTE_F64):
DEF_OP_CONVERT(float32, F32, float64, F64);
HANDLE_OP_END ();
/* conversions of f64 */
HANDLE_OP (WASM_OP_F64_CONVERT_S_I32):
DEF_OP_CONVERT(float64, F64, int32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_CONVERT_U_I32):
DEF_OP_CONVERT(float64, F64, uint32, I32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_CONVERT_S_I64):
DEF_OP_CONVERT(float64, F64, int64, I64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_CONVERT_U_I64):
DEF_OP_CONVERT(float64, F64, uint64, I64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_PROMOTE_F32):
DEF_OP_CONVERT(float64, F64, float32, F32);
HANDLE_OP_END ();
/* reinterpretations */
HANDLE_OP (WASM_OP_I32_REINTERPRET_F32):
DEF_OP_REINTERPRET(float32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_I64_REINTERPRET_F64):
DEF_OP_REINTERPRET(float64);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F32_REINTERPRET_I32):
DEF_OP_REINTERPRET(int32);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_F64_REINTERPRET_I64):
DEF_OP_REINTERPRET(int64);
HANDLE_OP_END ();
HANDLE_OP (EXT_OP_COPY_STACK_TOP):
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
frame_lp[addr2] = frame_lp[addr1];
HANDLE_OP_END ();
HANDLE_OP (EXT_OP_COPY_STACK_TOP_I64):
addr1 = GET_OFFSET();
addr2 = GET_OFFSET();
*(float64*)(frame_lp + addr2) = *(float64*)(frame_lp + addr1);
HANDLE_OP_END ();
HANDLE_OP (WASM_OP_SET_LOCAL):
HANDLE_OP (WASM_OP_TEE_LOCAL):
{
GET_LOCAL_INDEX_TYPE_AND_OFFSET();
switch (local_type) {
case VALUE_TYPE_I32:
case VALUE_TYPE_F32:
*(int32*)(frame_lp + local_offset) = GET_OPERAND(uint32, 0);
break;
case VALUE_TYPE_I64:
case VALUE_TYPE_F64:
PUT_I64_TO_ADDR((uint32*)(frame_lp + local_offset), GET_OPERAND(uint64, 0));
break;
default:
wasm_set_exception(module, "invalid local type");
goto got_exception;
}
HANDLE_OP_END ();
}
HANDLE_OP (WASM_OP_IMPDEP):
frame = prev_frame;
frame_ip = frame->ip;
goto call_func_from_entry;
#if WASM_ENABLE_LABELS_AS_VALUES == 0
default:
wasm_set_exception(module, "WASM interp failed: unsupported opcode.");
goto got_exception;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES != 0
HANDLE_OP (WASM_OP_UNUSED_0x06):
HANDLE_OP (WASM_OP_UNUSED_0x07):
HANDLE_OP (WASM_OP_UNUSED_0x08):
HANDLE_OP (WASM_OP_UNUSED_0x09):
HANDLE_OP (WASM_OP_UNUSED_0x0a):
HANDLE_OP (WASM_OP_UNUSED_0x12):
HANDLE_OP (WASM_OP_UNUSED_0x13):
HANDLE_OP (WASM_OP_UNUSED_0x14):
HANDLE_OP (WASM_OP_UNUSED_0x15):
HANDLE_OP (WASM_OP_UNUSED_0x16):
HANDLE_OP (WASM_OP_UNUSED_0x17):
HANDLE_OP (WASM_OP_UNUSED_0x18):
HANDLE_OP (WASM_OP_UNUSED_0x19):
HANDLE_OP (WASM_OP_UNUSED_0x1c):
HANDLE_OP (WASM_OP_UNUSED_0x1d):
HANDLE_OP (WASM_OP_UNUSED_0x1e):
HANDLE_OP (WASM_OP_UNUSED_0x1f):
HANDLE_OP (WASM_OP_UNUSED_0x25):
HANDLE_OP (WASM_OP_UNUSED_0x26):
HANDLE_OP (WASM_OP_UNUSED_0x27):
/* optimized op code */
HANDLE_OP (EXT_OP_GET_LOCAL_FAST):
HANDLE_OP (WASM_OP_GET_LOCAL):
HANDLE_OP (WASM_OP_F64_CONST):
HANDLE_OP (WASM_OP_I64_CONST):
HANDLE_OP (WASM_OP_F32_CONST):
HANDLE_OP (WASM_OP_I32_CONST):
HANDLE_OP (WASM_OP_DROP):
HANDLE_OP (WASM_OP_DROP_64):
HANDLE_OP (WASM_OP_BLOCK):
HANDLE_OP (WASM_OP_LOOP):
HANDLE_OP (WASM_OP_END):
HANDLE_OP (WASM_OP_NOP):
{
wasm_set_exception(module, "WASM interp failed: unsupported opcode.");
goto got_exception;
}
#endif
#if WASM_ENABLE_LABELS_AS_VALUES == 0
continue;
#else
FETCH_OPCODE_AND_DISPATCH ();
#endif
call_func_from_interp:
/* Only do the copy when it's called from interpreter. */
{
WASMInterpFrame *outs_area = wasm_exec_env_wasm_stack_top(exec_env);
outs_area->lp = outs_area->operand + cur_func->const_cell_num;
for (int i = 0; i < cur_func->param_count; i++) {
if (cur_func->param_types[i] == VALUE_TYPE_I64
|| cur_func->param_types[i] == VALUE_TYPE_F64) {
*(int64*)(outs_area->lp) =
GET_OPERAND(int64, (2 * (cur_func->param_count - i - 1)));
outs_area->lp += 2;
} else {
*(outs_area->lp) = GET_OPERAND(int32, (2 * (cur_func->param_count - i - 1)));;
outs_area->lp ++;
}
}
frame_ip += cur_func->param_count * sizeof(int16);
if (cur_func->ret_cell_num != 0)
frame->ret_offset = GET_OFFSET();
SYNC_ALL_TO_FRAME();
prev_frame = frame;
}
call_func_from_entry:
{
if (cur_func->is_import_func) {
wasm_interp_call_func_native(module, exec_env, cur_func, prev_frame);
prev_frame = frame->prev_frame;
cur_func = frame->function;
UPDATE_ALL_FROM_FRAME();
memory = module->default_memory;
if (wasm_get_exception(module))
goto got_exception;
}
else {
WASMFunction *cur_wasm_func = cur_func->u.func;
all_cell_num = (uint64)cur_func->param_cell_num
+ (uint64)cur_func->local_cell_num
+ (uint64)cur_func->const_cell_num
+ (uint64)cur_wasm_func->max_stack_cell_num;
if (all_cell_num >= UINT32_MAX) {
wasm_set_exception(module, "WASM interp failed: stack overflow.");
goto got_exception;
}
frame_size = wasm_interp_interp_frame_size((uint32)all_cell_num);
if (!(frame = ALLOC_FRAME(exec_env, frame_size, prev_frame))) {
frame = prev_frame;
goto got_exception;
}
/* Initialize the interpreter context. */
frame->function = cur_func;
frame_ip = wasm_get_func_code(cur_func);
frame_ip_end = wasm_get_func_code_end(cur_func);
frame_lp = frame->lp = frame->operand + cur_wasm_func->const_cell_num;
/* Initialize the consts */
bh_memcpy_s(frame->operand, all_cell_num * 4,
cur_wasm_func->consts, cur_wasm_func->const_cell_num * 4);
/* Initialize the local varialbes */
memset(frame_lp + cur_func->param_cell_num, 0,
(uint32)(cur_func->local_cell_num * 4));
wasm_exec_env_set_cur_frame(exec_env, (WASMRuntimeFrame*)frame);
}
HANDLE_OP_END ();
}
return_func:
{
FREE_FRAME(exec_env, frame);
wasm_exec_env_set_cur_frame(exec_env, (WASMRuntimeFrame*)prev_frame);
if (!prev_frame->ip)
/* Called from native. */
return;
RECOVER_CONTEXT(prev_frame);
HANDLE_OP_END ();
}
(void)frame_ip_end;
out_of_bounds:
wasm_set_exception(module, "out of bounds memory access");
got_exception:
return;
#if WASM_ENABLE_LABELS_AS_VALUES == 0
}
#else
FETCH_OPCODE_AND_DISPATCH ();
#endif
}
#if WASM_ENABLE_FAST_INTERP != 0
void **
wasm_interp_get_handle_table()
{
WASMModuleInstance module;
memset(&module, 0, sizeof(WASMModuleInstance));
wasm_interp_call_func_bytecode(&module, NULL, NULL, NULL);
return global_handle_table;
}
#endif
void
wasm_interp_call_wasm(WASMModuleInstance *module_inst,
WASMExecEnv *exec_env,
WASMFunctionInstance *function,
uint32 argc, uint32 argv[])
{
WASMRuntimeFrame *prev_frame = wasm_exec_env_get_cur_frame(exec_env);
WASMInterpFrame *frame, *outs_area;
/* Allocate sufficient cells for all kinds of return values. */
unsigned all_cell_num = 2, i;
/* This frame won't be used by JITed code, so only allocate interp
frame here. */
unsigned frame_size = wasm_interp_interp_frame_size(all_cell_num);
if (argc != function->param_cell_num) {
char buf[128];
snprintf(buf, sizeof(buf),
"invalid argument count %d, expected %d",
argc, function->param_cell_num);
wasm_set_exception(module_inst, buf);
return;
}
/* TODO: check stack overflow. */
if (!(frame = ALLOC_FRAME(exec_env, frame_size, (WASMInterpFrame*)prev_frame)))
return;
outs_area = wasm_exec_env_wasm_stack_top(exec_env);
frame->function = NULL;
frame->ip = NULL;
/* There is no local variable. */
frame->lp = frame->operand + 0;
frame->ret_offset = 0;
if (argc > 0)
word_copy(outs_area->operand + function->const_cell_num, argv, argc);
wasm_exec_env_set_cur_frame(exec_env, frame);
if (function->is_import_func)
wasm_interp_call_func_native(module_inst, exec_env, function, frame);
else
wasm_interp_call_func_bytecode(module_inst, exec_env, function, frame);
/* Output the return value to the caller */
if (!wasm_get_exception(module_inst)) {
for (i = 0; i < function->ret_cell_num; i++)
argv[i] = *(frame->lp + i);
}
wasm_exec_env_set_cur_frame(exec_env, prev_frame);
FREE_FRAME(exec_env, frame);
}