This repository has been archived on 2023-07-17. You can view files and clone it, but cannot push or open issues or pull requests.
bl_mcu_sdk/examples/dsp/TransformFunction_cfftx4/cfft.c

619 lines
18 KiB
C

#include "riscv_const_structs.h"
#include "ref.h"
void ref_cfft_f32(const riscv_cfft_instance_f32 *S, float32_t *p1,
uint8_t ifftFlag, uint8_t bitReverseFlag)
{
int n, mmax, m, j, istep, i;
float32_t wtemp, wr, wpr, wpi, wi, theta;
float32_t tempr, tempi;
float32_t *data = p1;
uint32_t N = S->fftLen;
int32_t dir = (ifftFlag) ? -1 : 1;
// decrement pointer since the original version used fortran style indexing.
data--;
n = N << 1;
j = 1;
for (i = 1; i < n; i += 2) {
if (j > i) {
tempr = data[j];
data[j] = data[i];
data[i] = tempr;
tempr = data[j + 1];
data[j + 1] = data[i + 1];
data[i + 1] = tempr;
}
m = n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 2;
while (n > mmax) {
istep = 2 * mmax;
theta = -6.283185307179586f / (dir * mmax);
wtemp = sinf(0.5f * theta);
wpr = -2.0f * wtemp * wtemp;
wpi = sinf(theta);
wr = 1.0f;
wi = 0.0f;
for (m = 1; m < mmax; m += 2) {
for (i = m; i <= n; i += istep) {
j = i + mmax;
tempr = wr * data[j] - wi * data[j + 1];
tempi = wr * data[j + 1] + wi * data[j];
data[j] = data[i] - tempr;
data[j + 1] = data[i + 1] - tempi;
data[i] += tempr;
data[i + 1] += tempi;
}
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
}
mmax = istep;
}
// Inverse transform is scaled by 1/N
if (ifftFlag) {
data++;
for (i = 0; i < 2 * N; i++) {
data[i] /= N;
}
}
}
void ref_cfft_q31(const riscv_cfft_instance_q31 *S, q31_t *p1, uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t i;
// float32_t *fSrc = (float32_t*)p1;
float32_t fSrc[S->fftLen * 2];
riscv_q31_to_float(p1, fSrc, S->fftLen * 2);
for (i = 0; i < S->fftLen * 2; i++) {
// read the q31 data, cast to float, scale down for float
fSrc[i] = (float32_t)p1[i] / 2147483648.0f;
}
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, fSrc, ifftFlag,
bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, fSrc, ifftFlag,
bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, fSrc, ifftFlag,
bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, fSrc, ifftFlag,
bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, fSrc, ifftFlag,
bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, fSrc, ifftFlag,
bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, fSrc, ifftFlag,
bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, fSrc, ifftFlag,
bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, fSrc, ifftFlag,
bitReverseFlag);
break;
}
if (ifftFlag) {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q31, cast to q31
p1[i] = (q31_t)(fSrc[i] * 2147483648.0f);
}
} else {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q31, cast to q31
p1[i] = (q31_t)(fSrc[i] * 2147483648.0f / (float32_t)S->fftLen);
}
}
}
void ref_cfft_q15(const riscv_cfft_instance_q15 *S, q15_t *pSrc, uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t i;
// float32_t *fSrc = (float32_t*)pSrc;
float32_t fSrc[S->fftLen * 2];
riscv_q15_to_float(pSrc, fSrc, S->fftLen * 2);
for (i = 0; i < S->fftLen * 2; i++) {
// read the q15 data, cast to float, scale down for float, place in
// temporary buffer
scratchArray[i] = (float32_t)pSrc[i] / 32768.0f;
}
for (i = 0; i < S->fftLen * 2; i++) {
// copy from temp buffer to final buffer
fSrc[i] = scratchArray[i];
}
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, fSrc, ifftFlag,
bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, fSrc, ifftFlag,
bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, fSrc, ifftFlag,
bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, fSrc, ifftFlag,
bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, fSrc, ifftFlag,
bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, fSrc, ifftFlag,
bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, fSrc, ifftFlag,
bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, fSrc, ifftFlag,
bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, fSrc, ifftFlag,
bitReverseFlag);
break;
}
if (ifftFlag) {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q15, cast to q15
pSrc[i] = (q15_t)(fSrc[i] * 32768.0f);
}
} else {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q15, cast to q15
pSrc[i] = (q15_t)(fSrc[i] * 32768.0f / (float32_t)S->fftLen);
}
}
}
void ref_cfft_radix2_f32(const riscv_cfft_radix2_instance_f32 *S, float32_t *pSrc)
{
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
}
}
void ref_cfft_radix2_q31(const riscv_cfft_radix2_instance_q31 *S, q31_t *pSrc)
{
uint32_t i;
// float32_t *fSrc = (float32_t*)pSrc;
float32_t fSrc[S->fftLen * 2];
riscv_q31_to_float(pSrc, fSrc, S->fftLen * 2);
for (i = 0; i < S->fftLen * 2; i++) {
// read the q31 data, cast to float, scale down for float
fSrc[i] = (float32_t)pSrc[i] / 2147483648.0f;
}
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
}
if (S->ifftFlag) {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q31, cast to q31
pSrc[i] = (q31_t)(fSrc[i] * 2147483648.0f);
}
} else {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q31, cast to q31
pSrc[i] = (q31_t)(fSrc[i] * 2147483648.0f / (float32_t)S->fftLen);
}
}
}
void ref_cfft_radix2_q15(const riscv_cfft_radix2_instance_q15 *S, q15_t *pSrc)
{
uint32_t i;
// float32_t *fSrc = (float32_t*)pSrc;
float32_t fSrc[S->fftLen * 2];
riscv_q15_to_float(pSrc, fSrc, S->fftLen * 2);
for (i = 0; i < S->fftLen * 2; i++) {
// read the q15 data, cast to float, scale down for float, place in
// temporary buffer
scratchArray[i] = (float32_t)pSrc[i] / 32768.0f;
}
for (i = 0; i < S->fftLen * 2; i++) {
// copy from temp buffer to final buffer
fSrc[i] = scratchArray[i];
}
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
}
if (S->ifftFlag) {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q15, cast to q15
pSrc[i] = (q15_t)(fSrc[i] * 32768.0f);
}
} else {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q15, cast to q15
pSrc[i] = (q15_t)(fSrc[i] * 32768.0f / (float32_t)S->fftLen);
}
}
}
void ref_cfft_radix4_f32(const riscv_cfft_radix4_instance_f32 *S, float32_t *pSrc)
{
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, pSrc, S->ifftFlag,
S->bitReverseFlag);
break;
}
}
void ref_cfft_radix4_q31(const riscv_cfft_radix4_instance_q31 *S, q31_t *pSrc)
{
uint32_t i;
// float32_t *fSrc = (float32_t*)pSrc;
float32_t fSrc[S->fftLen * 2];
riscv_q31_to_float(pSrc, fSrc, S->fftLen * 2);
for (i = 0; i < S->fftLen * 2; i++) {
// read the q31 data, cast to float, scale down for float
fSrc[i] = (float32_t)pSrc[i] / 2147483648.0f;
}
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
}
if (S->ifftFlag) {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q31, cast to q31
pSrc[i] = (q31_t)(fSrc[i] * 2147483648.0f);
}
} else {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q31, cast to q31
pSrc[i] = (q31_t)(fSrc[i] * 2147483648.0f / (float32_t)S->fftLen);
}
}
}
void ref_cfft_radix4_q15(const riscv_cfft_radix4_instance_q15 *S, q15_t *pSrc)
{
uint32_t i;
// float32_t *fSrc = (float32_t*)pSrc;
float32_t fSrc[S->fftLen * 2];
riscv_q15_to_float(pSrc, fSrc, S->fftLen * 2);
for (i = 0; i < S->fftLen * 2; i++) {
// read the q15 data, cast to float, scale down for float, place in
// temporary buffer
scratchArray[i] = (float32_t)pSrc[i] / 32768.0f;
}
for (i = 0; i < S->fftLen * 2; i++) {
// copy from temp buffer to final buffer
fSrc[i] = scratchArray[i];
}
switch (S->fftLen) {
case 16:
ref_cfft_f32(&riscv_cfft_sR_f32_len16, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 32:
ref_cfft_f32(&riscv_cfft_sR_f32_len32, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 64:
ref_cfft_f32(&riscv_cfft_sR_f32_len64, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 128:
ref_cfft_f32(&riscv_cfft_sR_f32_len128, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 256:
ref_cfft_f32(&riscv_cfft_sR_f32_len256, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 512:
ref_cfft_f32(&riscv_cfft_sR_f32_len512, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 1024:
ref_cfft_f32(&riscv_cfft_sR_f32_len1024, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 2048:
ref_cfft_f32(&riscv_cfft_sR_f32_len2048, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
case 4096:
ref_cfft_f32(&riscv_cfft_sR_f32_len4096, fSrc, S->ifftFlag,
S->bitReverseFlag);
break;
}
if (S->ifftFlag) {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q15, cast to q15
pSrc[i] = (q15_t)(fSrc[i] * 32768.0f);
}
} else {
for (i = 0; i < S->fftLen * 2; i++) {
// read the float data, scale up for q15, cast to q15
pSrc[i] = (q15_t)(fSrc[i] * 32768.0f / (float32_t)S->fftLen);
}
}
}