This repository has been archived on 2023-07-17. You can view files and clone it, but cannot push or open issues or pull requests.
bl_mcu_sdk/examples/adc/adc_key/main.c
2021-07-06 17:31:23 +08:00

209 lines
5.9 KiB
C

/**
* @file main.c
* @brief
*
* Copyright (c) 2021 Bouffalolab team
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
*/
#include "hal_adc.h"
#include "hal_gpio.h"
#define KEY0_ADC_VALUE (0)
#define KEY1_ADC_VALUE (100)
#define KEY2_ADC_VALUE (200)
#define KEY3_ADC_VALUE (300)
#define KEY4_ADC_VALUE (430)
#define KEY_NO_VALUE (3000)
#define KEY_MEASURE_OFFSET (30)
#define KEY_FILTER_NUM (200)
typedef struct
{
uint32_t vaildKeyNum;
uint16_t keyValue[KEY_FILTER_NUM];
} adc_keys_status;
adc_channel_t posChList[] = { ADC_CHANNEL8 };
adc_channel_t negChList[] = { ADC_CHANNEL_GND };
adc_channel_val_t result_val;
adc_keys_status key_machine;
struct device *adc_key;
uint32_t adc_value[2] = { 0 };
uint32_t key_voltage = 0;
/**
* @brief init adc key machine
*
*/
static void key_machine_init(void)
{
key_machine.vaildKeyNum = 0;
memset(key_machine.keyValue, 0xff, KEY_FILTER_NUM * 2);
}
/**
* @brief Get the adc value range object
*
* @param Vmv input adc value ,unit is mV
* @return uint16_t
*/
static uint16_t get_adc_value_range(uint32_t Vmv)
{
if (Vmv > KEY4_ADC_VALUE - KEY_MEASURE_OFFSET && Vmv < KEY4_ADC_VALUE + KEY_MEASURE_OFFSET) {
return KEY4_ADC_VALUE;
} else if (Vmv > KEY3_ADC_VALUE - KEY_MEASURE_OFFSET && Vmv < KEY3_ADC_VALUE + KEY_MEASURE_OFFSET) {
return KEY3_ADC_VALUE;
} else if (Vmv > KEY2_ADC_VALUE - KEY_MEASURE_OFFSET && Vmv < KEY2_ADC_VALUE + KEY_MEASURE_OFFSET) {
return KEY2_ADC_VALUE;
} else if (Vmv > KEY1_ADC_VALUE - KEY_MEASURE_OFFSET && Vmv < KEY1_ADC_VALUE + KEY_MEASURE_OFFSET) {
return KEY1_ADC_VALUE;
} else if (Vmv < KEY_MEASURE_OFFSET) {
return KEY0_ADC_VALUE;
} else {
return KEY_NO_VALUE;
}
}
/**
* @brief Get the adc key value object
*
* @param Vmv input adc value ,unit is mV
* @return int
*/
static int get_adc_key_value(uint32_t Vmv)
{
volatile uint16_t key_num[5] = { 0 };
uint8_t bigger = 0, i = 0, j = 0;
if (Vmv >= KEY0_ADC_VALUE && Vmv <= KEY4_ADC_VALUE + KEY_MEASURE_OFFSET) {
key_machine.keyValue[key_machine.vaildKeyNum] = get_adc_value_range(Vmv);
key_machine.vaildKeyNum++;
if (key_machine.vaildKeyNum > KEY_FILTER_NUM) {
for (i = 0; i < KEY_FILTER_NUM; i++) {
//Count the most Key Value
switch (key_machine.keyValue[i]) {
case KEY0_ADC_VALUE:
key_num[0]++;
break;
case KEY1_ADC_VALUE:
key_num[1]++;
break;
case KEY2_ADC_VALUE:
key_num[2]++;
break;
case KEY3_ADC_VALUE:
key_num[3]++;
break;
case KEY4_ADC_VALUE:
key_num[4]++;
break;
default:
break;
}
}
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
if (key_num[i] >= key_num[j]) {
bigger = 1;
} else {
bigger = 0;
break;
}
}
if (bigger) {
key_machine_init();
return i;
}
}
}
}
return KEY_NO_VALUE;
}
// uint32_t sum = 0;
// static uint32_t adc_val_filter(void)
// {
// static uint32_t cnt_filter = 0;
// static uint32_t volt_value = 0;
// volt_value += adc_value[0];
// if( ++cnt_filter >= 20)
// {
// cnt_filter = 0;
// key_voltage = (volt_value / 20 * 30 + key_voltage * 70) / 100;
// volt_value = 0;
// }
// }
int main(void)
{
bflb_platform_init(0);
uint16_t keyValue = 0;
adc_channel_cfg_t adc_channel_cfg;
adc_channel_cfg.pos_channel = posChList;
adc_channel_cfg.neg_channel = negChList;
adc_channel_cfg.num = 1;
adc_register(ADC0_INDEX, "adc_key", DEVICE_OFLAG_STREAM_RX);
adc_key = device_find("adc_key");
if (adc_key) {
ADC_DEV(adc_key)->continuous_conv_mode = ENABLE;
device_open(adc_key, DEVICE_OFLAG_STREAM_RX);
if (device_control(adc_key, DEVICE_CTRL_ADC_CHANNEL_CONFIG, &adc_channel_cfg) == ERROR) {
MSG("ADC channel config error , Please check the channel corresponding to IO is initial success by board system or Channel is invaild \r\n");
BL_CASE_FAIL;
while (1)
;
}
} else {
MSG("device open failed\r\n");
}
key_machine_init();
adc_channel_start(adc_key);
while (1) {
device_read(adc_key, 0, (void *)&result_val, 1);
keyValue = get_adc_key_value(result_val.volt * 1000);
if (keyValue != KEY_NO_VALUE) {
MSG("key %d pressed\r\n", keyValue);
MSG("result_val.volt: %0.2f mv\n", (result_val.volt * 1000));
}
}
}