This repository has been archived on 2023-07-17. You can view files and clone it, but cannot push or open issues or pull requests.
bl_mcu_sdk/components/lvgl/misc/lv_tlsf.c

1247 lines
37 KiB
C

#include "../lv_conf_internal.h"
#if LV_MEM_CUSTOM == 0
#include <limits.h>
#include "lv_tlsf.h"
#include "lv_mem.h"
#include "lv_log.h"
#include "lv_assert.h"
#undef printf
#define printf LV_LOG_ERROR
#define TLSF_MAX_POOL_SIZE LV_MEM_SIZE
#if !defined(_DEBUG)
#define _DEBUG 0
#endif
#if defined(__cplusplus)
#define tlsf_decl inline
#else
#define tlsf_decl static
#endif
/*
** Architecture-specific bit manipulation routines.
**
** TLSF achieves O(1) cost for malloc and free operations by limiting
** the search for a free block to a free list of guaranteed size
** adequate to fulfill the request, combined with efficient free list
** queries using bitmasks and architecture-specific bit-manipulation
** routines.
**
** Most modern processors provide instructions to count leading zeroes
** in a word, find the lowest and highest set bit, etc. These
** specific implementations will be used when available, falling back
** to a reasonably efficient generic implementation.
**
** NOTE: TLSF spec relies on ffs/fls returning value 0..31.
** ffs/fls return 1-32 by default, returning 0 for error.
*/
/*
** Detect whether or not we are building for a 32- or 64-bit (LP/LLP)
** architecture. There is no reliable portable method at compile-time.
*/
#if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) \
|| defined (_WIN64) || defined (__LP64__) || defined (__LLP64__)
#define TLSF_64BIT
#endif
/*
** Returns one plus the index of the most significant 1-bit of n,
** or if n is zero, returns zero.
*/
#ifdef TLSF_64BIT
#define TLSF_FLS(n) ((n) & 0xffffffff00000000ull ? 32 + TLSF_FLS32((size_t)(n) >> 32) : TLSF_FLS32(n))
#else
#define TLSF_FLS(n) TLSF_FLS32(n)
#endif
#define TLSF_FLS32(n) ((n) & 0xffff0000 ? 16 + TLSF_FLS16((n) >> 16) : TLSF_FLS16(n))
#define TLSF_FLS16(n) ((n) & 0xff00 ? 8 + TLSF_FLS8 ((n) >> 8) : TLSF_FLS8 (n))
#define TLSF_FLS8(n) ((n) & 0xf0 ? 4 + TLSF_FLS4 ((n) >> 4) : TLSF_FLS4 (n))
#define TLSF_FLS4(n) ((n) & 0xc ? 2 + TLSF_FLS2 ((n) >> 2) : TLSF_FLS2 (n))
#define TLSF_FLS2(n) ((n) & 0x2 ? 1 + TLSF_FLS1 ((n) >> 1) : TLSF_FLS1 (n))
#define TLSF_FLS1(n) ((n) & 0x1 ? 1 : 0)
/*
** Returns round up value of log2(n).
** Note: it is used at compile time.
*/
#define TLSF_LOG2_CEIL(n) ((n) & (n - 1) ? TLSF_FLS(n) : TLSF_FLS(n) - 1)
/*
** gcc 3.4 and above have builtin support, specialized for architecture.
** Some compilers masquerade as gcc; patchlevel test filters them out.
*/
#if defined (__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \
&& defined (__GNUC_PATCHLEVEL__)
#if defined (__SNC__)
/* SNC for Playstation 3. */
tlsf_decl int tlsf_ffs(unsigned int word)
{
const unsigned int reverse = word & (~word + 1);
const int bit = 32 - __builtin_clz(reverse);
return bit - 1;
}
#else
tlsf_decl int tlsf_ffs(unsigned int word)
{
return __builtin_ffs(word) - 1;
}
#endif
tlsf_decl int tlsf_fls(unsigned int word)
{
const int bit = word ? 32 - __builtin_clz(word) : 0;
return bit - 1;
}
#elif defined (_MSC_VER) && (_MSC_VER >= 1400) && (defined (_M_IX86) || defined (_M_X64))
/* Microsoft Visual C++ support on x86/X64 architectures. */
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanForward)
tlsf_decl int tlsf_fls(unsigned int word)
{
unsigned long index;
return _BitScanReverse(&index, word) ? index : -1;
}
tlsf_decl int tlsf_ffs(unsigned int word)
{
unsigned long index;
return _BitScanForward(&index, word) ? index : -1;
}
#elif defined (_MSC_VER) && defined (_M_PPC)
/* Microsoft Visual C++ support on PowerPC architectures. */
#include <ppcintrinsics.h>
tlsf_decl int tlsf_fls(unsigned int word)
{
const int bit = 32 - _CountLeadingZeros(word);
return bit - 1;
}
tlsf_decl int tlsf_ffs(unsigned int word)
{
const unsigned int reverse = word & (~word + 1);
const int bit = 32 - _CountLeadingZeros(reverse);
return bit - 1;
}
#elif defined (__ARMCC_VERSION)
/* RealView Compilation Tools for ARM */
tlsf_decl int tlsf_ffs(unsigned int word)
{
const unsigned int reverse = word & (~word + 1);
const int bit = 32 - __clz(reverse);
return bit - 1;
}
tlsf_decl int tlsf_fls(unsigned int word)
{
const int bit = word ? 32 - __clz(word) : 0;
return bit - 1;
}
#elif defined (__ghs__)
/* Green Hills support for PowerPC */
#include <ppc_ghs.h>
tlsf_decl int tlsf_ffs(unsigned int word)
{
const unsigned int reverse = word & (~word + 1);
const int bit = 32 - __CLZ32(reverse);
return bit - 1;
}
tlsf_decl int tlsf_fls(unsigned int word)
{
const int bit = word ? 32 - __CLZ32(word) : 0;
return bit - 1;
}
#else
/* Fall back to generic implementation. */
/* Implement ffs in terms of fls. */
tlsf_decl int tlsf_ffs(unsigned int word)
{
const unsigned int reverse = word & (~word + 1);
return TLSF_FLS32(reverse) - 1;
}
tlsf_decl int tlsf_fls(unsigned int word)
{
return TLSF_FLS32(word) - 1;
}
#endif
/* Possibly 64-bit version of tlsf_fls. */
#if defined (TLSF_64BIT)
tlsf_decl int tlsf_fls_sizet(size_t size)
{
int high = (int)(size >> 32);
int bits = 0;
if(high) {
bits = 32 + tlsf_fls(high);
}
else {
bits = tlsf_fls((int)size & 0xffffffff);
}
return bits;
}
#else
#define tlsf_fls_sizet tlsf_fls
#endif
#undef tlsf_decl
/*
** Constants.
*/
/* Public constants: may be modified. */
enum tlsf_public {
/* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of
** 4 or 5 are typical.
*/
SL_INDEX_COUNT_LOG2 = 5,
};
/* Private constants: do not modify. */
enum tlsf_private {
#if defined (TLSF_64BIT)
/* All allocation sizes and addresses are aligned to 8 bytes. */
ALIGN_SIZE_LOG2 = 3,
#else
/* All allocation sizes and addresses are aligned to 4 bytes. */
ALIGN_SIZE_LOG2 = 2,
#endif
ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
/*
** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
** However, because we linearly subdivide the second-level lists, and
** our minimum size granularity is 4 bytes, it doesn't make sense to
** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
** trying to split size ranges into more slots than we have available.
** Instead, we calculate the minimum threshold size, and place all
** blocks below that size into the 0th first-level list.
*/
#if defined (TLSF_MAX_POOL_SIZE)
FL_INDEX_MAX = TLSF_LOG2_CEIL(TLSF_MAX_POOL_SIZE),
#elif defined (TLSF_64BIT)
/*
** TODO: We can increase this to support larger sizes, at the expense
** of more overhead in the TLSF structure.
*/
FL_INDEX_MAX = 32,
#else
FL_INDEX_MAX = 30,
#endif
SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
};
/*
** Cast and min/max macros.
*/
#define tlsf_cast(t, exp) ((t) (exp))
#define tlsf_min(a, b) ((a) < (b) ? (a) : (b))
#define tlsf_max(a, b) ((a) > (b) ? (a) : (b))
/*
** Set assert macro, if it has not been provided by the user.
*/
#define tlsf_assert LV_ASSERT
#if !defined (tlsf_assert)
#define tlsf_assert assert
#endif
/*
** Static assertion mechanism.
*/
#define _tlsf_glue2(x, y) x ## y
#define _tlsf_glue(x, y) _tlsf_glue2(x, y)
#define tlsf_static_assert(exp) \
typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1]
/* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
/* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
/* Ensure we've properly tuned our sizes. */
tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
/*
** Data structures and associated constants.
*/
/*
** Block header structure.
**
** There are several implementation subtleties involved:
** - The prev_phys_block field is only valid if the previous block is free.
** - The prev_phys_block field is actually stored at the end of the
** previous block. It appears at the beginning of this structure only to
** simplify the implementation.
** - The next_free / prev_free fields are only valid if the block is free.
*/
typedef struct block_header_t {
/* Points to the previous physical block. */
struct block_header_t * prev_phys_block;
/* The size of this block, excluding the block header. */
size_t size;
/* Next and previous free blocks. */
struct block_header_t * next_free;
struct block_header_t * prev_free;
} block_header_t;
/*
** Since block sizes are always at least a multiple of 4, the two least
** significant bits of the size field are used to store the block status:
** - bit 0: whether block is busy or free
** - bit 1: whether previous block is busy or free
*/
static const size_t block_header_free_bit = 1 << 0;
static const size_t block_header_prev_free_bit = 1 << 1;
/*
** The size of the block header exposed to used blocks is the size field.
** The prev_phys_block field is stored *inside* the previous free block.
*/
static const size_t block_header_overhead = sizeof(size_t);
/* User data starts directly after the size field in a used block. */
static const size_t block_start_offset =
offsetof(block_header_t, size) + sizeof(size_t);
/*
** A free block must be large enough to store its header minus the size of
** the prev_phys_block field, and no larger than the number of addressable
** bits for FL_INDEX.
*/
static const size_t block_size_min =
sizeof(block_header_t) - sizeof(block_header_t *);
static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX;
/* The TLSF control structure. */
typedef struct control_t {
/* Empty lists point at this block to indicate they are free. */
block_header_t block_null;
/* Bitmaps for free lists. */
unsigned int fl_bitmap;
unsigned int sl_bitmap[FL_INDEX_COUNT];
/* Head of free lists. */
block_header_t * blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
} control_t;
/* A type used for casting when doing pointer arithmetic. */
typedef ptrdiff_t tlsfptr_t;
/*
** block_header_t member functions.
*/
static size_t block_size(const block_header_t * block)
{
return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
}
static void block_set_size(block_header_t * block, size_t size)
{
const size_t oldsize = block->size;
block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
}
static int block_is_last(const block_header_t * block)
{
return block_size(block) == 0;
}
static int block_is_free(const block_header_t * block)
{
return tlsf_cast(int, block->size & block_header_free_bit);
}
static void block_set_free(block_header_t * block)
{
block->size |= block_header_free_bit;
}
static void block_set_used(block_header_t * block)
{
block->size &= ~block_header_free_bit;
}
static int block_is_prev_free(const block_header_t * block)
{
return tlsf_cast(int, block->size & block_header_prev_free_bit);
}
static void block_set_prev_free(block_header_t * block)
{
block->size |= block_header_prev_free_bit;
}
static void block_set_prev_used(block_header_t * block)
{
block->size &= ~block_header_prev_free_bit;
}
static block_header_t * block_from_ptr(const void * ptr)
{
return tlsf_cast(block_header_t *,
tlsf_cast(unsigned char *, ptr) - block_start_offset);
}
static void * block_to_ptr(const block_header_t * block)
{
return tlsf_cast(void *,
tlsf_cast(unsigned char *, block) + block_start_offset);
}
/* Return location of next block after block of given size. */
static block_header_t * offset_to_block(const void * ptr, size_t size)
{
return tlsf_cast(block_header_t *, tlsf_cast(tlsfptr_t, ptr) + size);
}
/* Return location of previous block. */
static block_header_t * block_prev(const block_header_t * block)
{
tlsf_assert(block_is_prev_free(block) && "previous block must be free");
return block->prev_phys_block;
}
/* Return location of next existing block. */
static block_header_t * block_next(const block_header_t * block)
{
block_header_t * next = offset_to_block(block_to_ptr(block),
block_size(block) - block_header_overhead);
tlsf_assert(!block_is_last(block));
return next;
}
/* Link a new block with its physical neighbor, return the neighbor. */
static block_header_t * block_link_next(block_header_t * block)
{
block_header_t * next = block_next(block);
next->prev_phys_block = block;
return next;
}
static void block_mark_as_free(block_header_t * block)
{
/* Link the block to the next block, first. */
block_header_t * next = block_link_next(block);
block_set_prev_free(next);
block_set_free(block);
}
static void block_mark_as_used(block_header_t * block)
{
block_header_t * next = block_next(block);
block_set_prev_used(next);
block_set_used(block);
}
static size_t align_up(size_t x, size_t align)
{
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
return (x + (align - 1)) & ~(align - 1);
}
static size_t align_down(size_t x, size_t align)
{
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
return x - (x & (align - 1));
}
static void * align_ptr(const void * ptr, size_t align)
{
const tlsfptr_t aligned =
(tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
return tlsf_cast(void *, aligned);
}
/*
** Adjust an allocation size to be aligned to word size, and no smaller
** than internal minimum.
*/
static size_t adjust_request_size(size_t size, size_t align)
{
size_t adjust = 0;
if(size) {
const size_t aligned = align_up(size, align);
/* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
if(aligned < block_size_max) {
adjust = tlsf_max(aligned, block_size_min);
}
}
return adjust;
}
/*
** TLSF utility functions. In most cases, these are direct translations of
** the documentation found in the white paper.
*/
static void mapping_insert(size_t size, int * fli, int * sli)
{
int fl, sl;
if(size < SMALL_BLOCK_SIZE) {
/* Store small blocks in first list. */
fl = 0;
sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
}
else {
fl = tlsf_fls_sizet(size);
sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
fl -= (FL_INDEX_SHIFT - 1);
}
*fli = fl;
*sli = sl;
}
/* This version rounds up to the next block size (for allocations) */
static void mapping_search(size_t size, int * fli, int * sli)
{
if(size >= SMALL_BLOCK_SIZE) {
const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1;
size += round;
}
mapping_insert(size, fli, sli);
}
static block_header_t * search_suitable_block(control_t * control, int * fli, int * sli)
{
int fl = *fli;
int sl = *sli;
/*
** First, search for a block in the list associated with the given
** fl/sl index.
*/
unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
if(!sl_map) {
/* No block exists. Search in the next largest first-level list. */
const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1));
if(!fl_map) {
/* No free blocks available, memory has been exhausted. */
return 0;
}
fl = tlsf_ffs(fl_map);
*fli = fl;
sl_map = control->sl_bitmap[fl];
}
tlsf_assert(sl_map && "internal error - second level bitmap is null");
sl = tlsf_ffs(sl_map);
*sli = sl;
/* Return the first block in the free list. */
return control->blocks[fl][sl];
}
/* Remove a free block from the free list.*/
static void remove_free_block(control_t * control, block_header_t * block, int fl, int sl)
{
block_header_t * prev = block->prev_free;
block_header_t * next = block->next_free;
tlsf_assert(prev && "prev_free field can not be null");
tlsf_assert(next && "next_free field can not be null");
next->prev_free = prev;
prev->next_free = next;
/* If this block is the head of the free list, set new head. */
if(control->blocks[fl][sl] == block) {
control->blocks[fl][sl] = next;
/* If the new head is null, clear the bitmap. */
if(next == &control->block_null) {
control->sl_bitmap[fl] &= ~(1U << sl);
/* If the second bitmap is now empty, clear the fl bitmap. */
if(!control->sl_bitmap[fl]) {
control->fl_bitmap &= ~(1U << fl);
}
}
}
}
/* Insert a free block into the free block list. */
static void insert_free_block(control_t * control, block_header_t * block, int fl, int sl)
{
block_header_t * current = control->blocks[fl][sl];
tlsf_assert(current && "free list cannot have a null entry");
tlsf_assert(block && "cannot insert a null entry into the free list");
block->next_free = current;
block->prev_free = &control->block_null;
current->prev_free = block;
tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE)
&& "block not aligned properly");
/*
** Insert the new block at the head of the list, and mark the first-
** and second-level bitmaps appropriately.
*/
control->blocks[fl][sl] = block;
control->fl_bitmap |= (1U << fl);
control->sl_bitmap[fl] |= (1U << sl);
}
/* Remove a given block from the free list. */
static void block_remove(control_t * control, block_header_t * block)
{
int fl, sl;
mapping_insert(block_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl);
}
/* Insert a given block into the free list. */
static void block_insert(control_t * control, block_header_t * block)
{
int fl, sl;
mapping_insert(block_size(block), &fl, &sl);
insert_free_block(control, block, fl, sl);
}
static int block_can_split(block_header_t * block, size_t size)
{
return block_size(block) >= sizeof(block_header_t) + size;
}
/* Split a block into two, the second of which is free. */
static block_header_t * block_split(block_header_t * block, size_t size)
{
/* Calculate the amount of space left in the remaining block. */
block_header_t * remaining =
offset_to_block(block_to_ptr(block), size - block_header_overhead);
const size_t remain_size = block_size(block) - (size + block_header_overhead);
tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE)
&& "remaining block not aligned properly");
tlsf_assert(block_size(block) == remain_size + size + block_header_overhead);
block_set_size(remaining, remain_size);
tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size");
block_set_size(block, size);
block_mark_as_free(remaining);
return remaining;
}
/* Absorb a free block's storage into an adjacent previous free block. */
static block_header_t * block_absorb(block_header_t * prev, block_header_t * block)
{
tlsf_assert(!block_is_last(prev) && "previous block can't be last");
/* Note: Leaves flags untouched. */
prev->size += block_size(block) + block_header_overhead;
block_link_next(prev);
return prev;
}
/* Merge a just-freed block with an adjacent previous free block. */
static block_header_t * block_merge_prev(control_t * control, block_header_t * block)
{
if(block_is_prev_free(block)) {
block_header_t * prev = block_prev(block);
tlsf_assert(prev && "prev physical block can't be null");
tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
block_remove(control, prev);
block = block_absorb(prev, block);
}
return block;
}
/* Merge a just-freed block with an adjacent free block. */
static block_header_t * block_merge_next(control_t * control, block_header_t * block)
{
block_header_t * next = block_next(block);
tlsf_assert(next && "next physical block can't be null");
if(block_is_free(next)) {
tlsf_assert(!block_is_last(block) && "previous block can't be last");
block_remove(control, next);
block = block_absorb(block, next);
}
return block;
}
/* Trim any trailing block space off the end of a block, return to pool. */
static void block_trim_free(control_t * control, block_header_t * block, size_t size)
{
tlsf_assert(block_is_free(block) && "block must be free");
if(block_can_split(block, size)) {
block_header_t * remaining_block = block_split(block, size);
block_link_next(block);
block_set_prev_free(remaining_block);
block_insert(control, remaining_block);
}
}
/* Trim any trailing block space off the end of a used block, return to pool. */
static void block_trim_used(control_t * control, block_header_t * block, size_t size)
{
tlsf_assert(!block_is_free(block) && "block must be used");
if(block_can_split(block, size)) {
/* If the next block is free, we must coalesce. */
block_header_t * remaining_block = block_split(block, size);
block_set_prev_used(remaining_block);
remaining_block = block_merge_next(control, remaining_block);
block_insert(control, remaining_block);
}
}
static block_header_t * block_trim_free_leading(control_t * control, block_header_t * block, size_t size)
{
block_header_t * remaining_block = block;
if(block_can_split(block, size)) {
/* We want the 2nd block. */
remaining_block = block_split(block, size - block_header_overhead);
block_set_prev_free(remaining_block);
block_link_next(block);
block_insert(control, block);
}
return remaining_block;
}
static block_header_t * block_locate_free(control_t * control, size_t size)
{
int fl = 0, sl = 0;
block_header_t * block = 0;
if(size) {
mapping_search(size, &fl, &sl);
/*
** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
** with indices that are off the end of the block array.
** So, we protect against that here, since this is the only callsite of mapping_search.
** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
*/
if(fl < FL_INDEX_COUNT) {
block = search_suitable_block(control, &fl, &sl);
}
}
if(block) {
tlsf_assert(block_size(block) >= size);
remove_free_block(control, block, fl, sl);
}
return block;
}
static void * block_prepare_used(control_t * control, block_header_t * block, size_t size)
{
void * p = 0;
if(block) {
tlsf_assert(size && "size must be non-zero");
block_trim_free(control, block, size);
block_mark_as_used(block);
p = block_to_ptr(block);
}
return p;
}
/* Clear structure and point all empty lists at the null block. */
static void control_constructor(control_t * control)
{
int i, j;
control->block_null.next_free = &control->block_null;
control->block_null.prev_free = &control->block_null;
control->fl_bitmap = 0;
for(i = 0; i < FL_INDEX_COUNT; ++i) {
control->sl_bitmap[i] = 0;
for(j = 0; j < SL_INDEX_COUNT; ++j) {
control->blocks[i][j] = &control->block_null;
}
}
}
/*
** Debugging utilities.
*/
typedef struct integrity_t {
int prev_status;
int status;
} integrity_t;
#define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }
static void integrity_walker(void * ptr, size_t size, int used, void * user)
{
block_header_t * block = block_from_ptr(ptr);
integrity_t * integ = tlsf_cast(integrity_t *, user);
const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
const int this_status = block_is_free(block) ? 1 : 0;
const size_t this_block_size = block_size(block);
int status = 0;
LV_UNUSED(used);
tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
tlsf_insist(size == this_block_size && "block size incorrect");
integ->prev_status = this_status;
integ->status += status;
}
int lv_tlsf_check(lv_tlsf_t tlsf)
{
int i, j;
control_t * control = tlsf_cast(control_t *, tlsf);
int status = 0;
/* Check that the free lists and bitmaps are accurate. */
for(i = 0; i < FL_INDEX_COUNT; ++i) {
for(j = 0; j < SL_INDEX_COUNT; ++j) {
const int fl_map = control->fl_bitmap & (1U << i);
const int sl_list = control->sl_bitmap[i];
const int sl_map = sl_list & (1U << j);
const block_header_t * block = control->blocks[i][j];
/* Check that first- and second-level lists agree. */
if(!fl_map) {
tlsf_insist(!sl_map && "second-level map must be null");
}
if(!sl_map) {
tlsf_insist(block == &control->block_null && "block list must be null");
continue;
}
/* Check that there is at least one free block. */
tlsf_insist(sl_list && "no free blocks in second-level map");
tlsf_insist(block != &control->block_null && "block should not be null");
while(block != &control->block_null) {
int fli, sli;
tlsf_insist(block_is_free(block) && "block should be free");
tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
mapping_insert(block_size(block), &fli, &sli);
tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
block = block->next_free;
}
}
}
return status;
}
#undef tlsf_insist
static void default_walker(void * ptr, size_t size, int used, void * user)
{
LV_UNUSED(user);
printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, (void *)block_from_ptr(ptr));
}
void lv_tlsf_walk_pool(lv_pool_t pool, lv_tlsf_walker walker, void * user)
{
lv_tlsf_walker pool_walker = walker ? walker : default_walker;
block_header_t * block =
offset_to_block(pool, -(int)block_header_overhead);
while(block && !block_is_last(block)) {
pool_walker(
block_to_ptr(block),
block_size(block),
!block_is_free(block),
user);
block = block_next(block);
}
}
size_t lv_tlsf_block_size(void * ptr)
{
size_t size = 0;
if(ptr) {
const block_header_t * block = block_from_ptr(ptr);
size = block_size(block);
}
return size;
}
int lv_tlsf_check_pool(lv_pool_t pool)
{
/* Check that the blocks are physically correct. */
integrity_t integ = { 0, 0 };
lv_tlsf_walk_pool(pool, integrity_walker, &integ);
return integ.status;
}
/*
** Size of the TLSF structures in a given memory block passed to
** lv_tlsf_create, equal to the size of a control_t
*/
size_t lv_tlsf_size(void)
{
return sizeof(control_t);
}
size_t lv_tlsf_align_size(void)
{
return ALIGN_SIZE;
}
size_t lv_tlsf_block_size_min(void)
{
return block_size_min;
}
size_t lv_tlsf_block_size_max(void)
{
return block_size_max;
}
/*
** Overhead of the TLSF structures in a given memory block passed to
** lv_tlsf_add_pool, equal to the overhead of a free block and the
** sentinel block.
*/
size_t lv_tlsf_pool_overhead(void)
{
return 2 * block_header_overhead;
}
size_t lv_tlsf_alloc_overhead(void)
{
return block_header_overhead;
}
lv_pool_t lv_tlsf_add_pool(lv_tlsf_t tlsf, void * mem, size_t bytes)
{
block_header_t * block;
block_header_t * next;
const size_t pool_overhead = lv_tlsf_pool_overhead();
const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);
if(((ptrdiff_t)mem % ALIGN_SIZE) != 0) {
printf("lv_tlsf_add_pool: Memory must be aligned by %u bytes.\n",
(unsigned int)ALIGN_SIZE);
return 0;
}
if(pool_bytes < block_size_min || pool_bytes > block_size_max) {
#if defined (TLSF_64BIT)
printf("lv_tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
(unsigned int)(pool_overhead + block_size_min),
(unsigned int)((pool_overhead + block_size_max) / 256));
#else
printf("lv_tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
(unsigned int)(pool_overhead + block_size_min),
(unsigned int)(pool_overhead + block_size_max));
#endif
return 0;
}
/*
** Create the main free block. Offset the start of the block slightly
** so that the prev_phys_block field falls outside of the pool -
** it will never be used.
*/
block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
block_set_size(block, pool_bytes);
block_set_free(block);
block_set_prev_used(block);
block_insert(tlsf_cast(control_t *, tlsf), block);
/* Split the block to create a zero-size sentinel block. */
next = block_link_next(block);
block_set_size(next, 0);
block_set_used(next);
block_set_prev_free(next);
return mem;
}
void lv_tlsf_remove_pool(lv_tlsf_t tlsf, lv_pool_t pool)
{
control_t * control = tlsf_cast(control_t *, tlsf);
block_header_t * block = offset_to_block(pool, -(int)block_header_overhead);
int fl = 0, sl = 0;
tlsf_assert(block_is_free(block) && "block should be free");
tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
mapping_insert(block_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl);
}
/*
** TLSF main interface.
*/
#if _DEBUG
int test_ffs_fls()
{
/* Verify ffs/fls work properly. */
int rv = 0;
rv += (tlsf_ffs(0) == -1) ? 0 : 0x1;
rv += (tlsf_fls(0) == -1) ? 0 : 0x2;
rv += (tlsf_ffs(1) == 0) ? 0 : 0x4;
rv += (tlsf_fls(1) == 0) ? 0 : 0x8;
rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10;
rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20;
rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40;
rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80;
#if defined (TLSF_64BIT)
rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100;
rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200;
rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400;
#endif
if(rv) {
printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv);
}
return rv;
}
#endif
lv_tlsf_t lv_tlsf_create(void * mem)
{
#if _DEBUG
if(test_ffs_fls()) {
return 0;
}
#endif
if(((tlsfptr_t)mem % ALIGN_SIZE) != 0) {
printf("lv_tlsf_create: Memory must be aligned to %u bytes.\n",
(unsigned int)ALIGN_SIZE);
return 0;
}
control_constructor(tlsf_cast(control_t *, mem));
return tlsf_cast(lv_tlsf_t, mem);
}
lv_tlsf_t lv_tlsf_create_with_pool(void * mem, size_t bytes)
{
lv_tlsf_t tlsf = lv_tlsf_create(mem);
lv_tlsf_add_pool(tlsf, (char *)mem + lv_tlsf_size(), bytes - lv_tlsf_size());
return tlsf;
}
void lv_tlsf_destroy(lv_tlsf_t tlsf)
{
/* Nothing to do. */
LV_UNUSED(tlsf);
}
lv_pool_t lv_tlsf_get_pool(lv_tlsf_t tlsf)
{
return tlsf_cast(lv_pool_t, (char *)tlsf + lv_tlsf_size());
}
void * lv_tlsf_malloc(lv_tlsf_t tlsf, size_t size)
{
control_t * control = tlsf_cast(control_t *, tlsf);
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
block_header_t * block = block_locate_free(control, adjust);
return block_prepare_used(control, block, adjust);
}
void * lv_tlsf_memalign(lv_tlsf_t tlsf, size_t align, size_t size)
{
control_t * control = tlsf_cast(control_t *, tlsf);
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
/*
** We must allocate an additional minimum block size bytes so that if
** our free block will leave an alignment gap which is smaller, we can
** trim a leading free block and release it back to the pool. We must
** do this because the previous physical block is in use, therefore
** the prev_phys_block field is not valid, and we can't simply adjust
** the size of that block.
*/
const size_t gap_minimum = sizeof(block_header_t);
const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align);
/*
** If alignment is less than or equals base alignment, we're done.
** If we requested 0 bytes, return null, as lv_tlsf_malloc(0) does.
*/
const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
block_header_t * block = block_locate_free(control, aligned_size);
/* This can't be a static assert. */
tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
if(block) {
void * ptr = block_to_ptr(block);
void * aligned = align_ptr(ptr, align);
size_t gap = tlsf_cast(size_t,
tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
/* If gap size is too small, offset to next aligned boundary. */
if(gap && gap < gap_minimum) {
const size_t gap_remain = gap_minimum - gap;
const size_t offset = tlsf_max(gap_remain, align);
const void * next_aligned = tlsf_cast(void *,
tlsf_cast(tlsfptr_t, aligned) + offset);
aligned = align_ptr(next_aligned, align);
gap = tlsf_cast(size_t,
tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
}
if(gap) {
tlsf_assert(gap >= gap_minimum && "gap size too small");
block = block_trim_free_leading(control, block, gap);
}
}
return block_prepare_used(control, block, adjust);
}
size_t lv_tlsf_free(lv_tlsf_t tlsf, const void * ptr)
{
size_t size = 0;
/* Don't attempt to free a NULL pointer. */
if(ptr) {
control_t * control = tlsf_cast(control_t *, tlsf);
block_header_t * block = block_from_ptr(ptr);
tlsf_assert(!block_is_free(block) && "block already marked as free");
size = block->size;
block_mark_as_free(block);
block = block_merge_prev(control, block);
block = block_merge_next(control, block);
block_insert(control, block);
}
return size;
}
/*
** The TLSF block information provides us with enough information to
** provide a reasonably intelligent implementation of realloc, growing or
** shrinking the currently allocated block as required.
**
** This routine handles the somewhat esoteric edge cases of realloc:
** - a non-zero size with a null pointer will behave like malloc
** - a zero size with a non-null pointer will behave like free
** - a request that cannot be satisfied will leave the original buffer
** untouched
** - an extended buffer size will leave the newly-allocated area with
** contents undefined
*/
void * lv_tlsf_realloc(lv_tlsf_t tlsf, void * ptr, size_t size)
{
control_t * control = tlsf_cast(control_t *, tlsf);
void * p = 0;
/* Zero-size requests are treated as free. */
if(ptr && size == 0) {
lv_tlsf_free(tlsf, ptr);
}
/* Requests with NULL pointers are treated as malloc. */
else if(!ptr) {
p = lv_tlsf_malloc(tlsf, size);
}
else {
block_header_t * block = block_from_ptr(ptr);
block_header_t * next = block_next(block);
const size_t cursize = block_size(block);
const size_t combined = cursize + block_size(next) + block_header_overhead;
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
if(size > cursize && adjust == 0) {
/* The request is probably too large, fail */
return NULL;
}
tlsf_assert(!block_is_free(block) && "block already marked as free");
/*
** If the next block is used, or when combined with the current
** block, does not offer enough space, we must reallocate and copy.
*/
if(adjust > cursize && (!block_is_free(next) || adjust > combined)) {
p = lv_tlsf_malloc(tlsf, size);
if(p) {
const size_t minsize = tlsf_min(cursize, size);
lv_memcpy(p, ptr, minsize);
lv_tlsf_free(tlsf, ptr);
}
}
else {
/* Do we need to expand to the next block? */
if(adjust > cursize) {
block_merge_next(control, block);
block_mark_as_used(block);
}
/* Trim the resulting block and return the original pointer. */
block_trim_used(control, block, adjust);
p = ptr;
}
}
return p;
}
#endif /* LV_MEM_CUSTOM == 0 */