/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #include "common.h" #if defined(MBEDTLS_SHA256_C) #include "mbedtls/sha256.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #include #define mbedtls_printf printf #define mbedtls_calloc calloc #define mbedtls_free free #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST */ #define SHA256_VALIDATE_RET(cond) \ MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_SHA256_BAD_INPUT_DATA) #define SHA256_VALIDATE(cond) MBEDTLS_INTERNAL_VALIDATE(cond) #if !defined(MBEDTLS_SHA256_ALT) /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n, b, i) \ do { \ (n) = ((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | ((uint32_t)(b)[(i) + 2] << 8) | ((uint32_t)(b)[(i) + 3]); \ } while (0) #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n, b, i) \ do { \ (b)[(i)] = (unsigned char)((n) >> 24); \ (b)[(i) + 1] = (unsigned char)((n) >> 16); \ (b)[(i) + 2] = (unsigned char)((n) >> 8); \ (b)[(i) + 3] = (unsigned char)((n)); \ } while (0) #endif void mbedtls_sha256_init(mbedtls_sha256_context *ctx) { SHA256_VALIDATE(ctx != NULL); memset(ctx, 0, sizeof(mbedtls_sha256_context)); } void mbedtls_sha256_free(mbedtls_sha256_context *ctx) { if (ctx == NULL) { return; } mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context)); } void mbedtls_sha256_clone(mbedtls_sha256_context *dst, const mbedtls_sha256_context *src) { SHA256_VALIDATE(dst != NULL); SHA256_VALIDATE(src != NULL); *dst = *src; } /* * SHA-256 context setup */ int mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int is224) { SHA256_VALIDATE_RET(ctx != NULL); #if defined(MBEDTLS_SHA224_C) SHA256_VALIDATE_RET(is224 == 0 || is224 == 1); #else SHA256_VALIDATE_RET(is224 == 0); #endif ctx->total[0] = 0; ctx->total[1] = 0; if (is224 == 0) { /* SHA-256 */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } else { #if defined(MBEDTLS_SHA224_C) /* SHA-224 */ ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; #endif } ctx->is224 = is224; return (0); } #if !defined(MBEDTLS_SHA256_PROCESS_ALT) static const uint32_t K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; #define SHR(x, n) (((x)&0xFFFFFFFF) >> (n)) #define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n)))) #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) #define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define R(t) \ ( \ local.W[t] = S1(local.W[(t)-2]) + local.W[(t)-7] + \ S0(local.W[(t)-15]) + local.W[(t)-16]) #define P(a, b, c, d, e, f, g, h, x, K) \ do { \ local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x); \ local.temp2 = S2(a) + F0((a), (b), (c)); \ (d) += local.temp1; \ (h) = local.temp1 + local.temp2; \ } while (0) int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx, const unsigned char data[64]) { struct { uint32_t temp1, temp2, W[64]; uint32_t A[8]; } local; unsigned int i; SHA256_VALIDATE_RET(ctx != NULL); SHA256_VALIDATE_RET((const unsigned char *)data != NULL); for (i = 0; i < 8; i++) { local.A[i] = ctx->state[i]; } #if defined(MBEDTLS_SHA256_SMALLER) for (i = 0; i < 64; i++) { if (i < 16) { GET_UINT32_BE(local.W[i], data, 4 * i); } else { R(i); } P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i], K[i]); local.temp1 = local.A[7]; local.A[7] = local.A[6]; local.A[6] = local.A[5]; local.A[5] = local.A[4]; local.A[4] = local.A[3]; local.A[3] = local.A[2]; local.A[2] = local.A[1]; local.A[1] = local.A[0]; local.A[0] = local.temp1; } #else /* MBEDTLS_SHA256_SMALLER */ for (i = 0; i < 16; i++) { GET_UINT32_BE(local.W[i], data, 4 * i); } for (i = 0; i < 16; i += 8) { P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i + 0], K[i + 0]); P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.W[i + 1], K[i + 1]); P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.W[i + 2], K[i + 2]); P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.W[i + 3], K[i + 3]); P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.W[i + 4], K[i + 4]); P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.W[i + 5], K[i + 5]); P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.W[i + 6], K[i + 6]); P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.W[i + 7], K[i + 7]); } for (i = 16; i < 64; i += 8) { P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], R(i + 0), K[i + 0]); P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], R(i + 1), K[i + 1]); P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], R(i + 2), K[i + 2]); P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], R(i + 3), K[i + 3]); P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], R(i + 4), K[i + 4]); P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], R(i + 5), K[i + 5]); P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], R(i + 6), K[i + 6]); P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], R(i + 7), K[i + 7]); } #endif /* MBEDTLS_SHA256_SMALLER */ for (i = 0; i < 8; i++) { ctx->state[i] += local.A[i]; } /* Zeroise buffers and variables to clear sensitive data from memory. */ mbedtls_platform_zeroize(&local, sizeof(local)); return (0); } #endif /* !MBEDTLS_SHA256_PROCESS_ALT */ /* * SHA-256 process buffer */ int mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t fill; uint32_t left; SHA256_VALIDATE_RET(ctx != NULL); SHA256_VALIDATE_RET(ilen == 0 || input != NULL); if (ilen == 0) { return (0); } left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t)ilen; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < (uint32_t)ilen) { ctx->total[1]++; } if (left && ilen >= fill) { memcpy((void *)(ctx->buffer + left), input, fill); if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) { return (ret); } input += fill; ilen -= fill; left = 0; } while (ilen >= 64) { if ((ret = mbedtls_internal_sha256_process(ctx, input)) != 0) { return (ret); } input += 64; ilen -= 64; } if (ilen > 0) { memcpy((void *)(ctx->buffer + left), input, ilen); } return (0); } /* * SHA-256 final digest */ int mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, unsigned char *output) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; uint32_t used; uint32_t high, low; SHA256_VALIDATE_RET(ctx != NULL); SHA256_VALIDATE_RET((unsigned char *)output != NULL); /* * Add padding: 0x80 then 0x00 until 8 bytes remain for the length */ used = ctx->total[0] & 0x3F; ctx->buffer[used++] = 0x80; if (used <= 56) { /* Enough room for padding + length in current block */ memset(ctx->buffer + used, 0, 56 - used); } else { /* We'll need an extra block */ memset(ctx->buffer + used, 0, 64 - used); if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) { return (ret); } memset(ctx->buffer, 0, 56); } /* * Add message length */ high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT32_BE(high, ctx->buffer, 56); PUT_UINT32_BE(low, ctx->buffer, 60); if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) { return (ret); } /* * Output final state */ PUT_UINT32_BE(ctx->state[0], output, 0); PUT_UINT32_BE(ctx->state[1], output, 4); PUT_UINT32_BE(ctx->state[2], output, 8); PUT_UINT32_BE(ctx->state[3], output, 12); PUT_UINT32_BE(ctx->state[4], output, 16); PUT_UINT32_BE(ctx->state[5], output, 20); PUT_UINT32_BE(ctx->state[6], output, 24); #if defined(MBEDTLS_SHA224_C) if (ctx->is224 == 0) #endif PUT_UINT32_BE(ctx->state[7], output, 28); return (0); } #endif /* !MBEDTLS_SHA256_ALT */ /* * output = SHA-256( input buffer ) */ int mbedtls_sha256_ret(const unsigned char *input, size_t ilen, unsigned char *output, int is224) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_sha256_context ctx; #if defined(MBEDTLS_SHA224_C) SHA256_VALIDATE_RET(is224 == 0 || is224 == 1); #else SHA256_VALIDATE_RET(is224 == 0); #endif SHA256_VALIDATE_RET(ilen == 0 || input != NULL); SHA256_VALIDATE_RET((unsigned char *)output != NULL); mbedtls_sha256_init(&ctx); if ((ret = mbedtls_sha256_starts_ret(&ctx, is224)) != 0) { goto exit; } if ((ret = mbedtls_sha256_update_ret(&ctx, input, ilen)) != 0) { goto exit; } if ((ret = mbedtls_sha256_finish_ret(&ctx, output)) != 0) { goto exit; } exit: mbedtls_sha256_free(&ctx); return (ret); } #if defined(MBEDTLS_SELF_TEST) /* * FIPS-180-2 test vectors */ static const unsigned char sha256_test_buf[3][57] = { { "abc" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" }, { "" } }; static const size_t sha256_test_buflen[3] = { 3, 56, 1000 }; static const unsigned char sha256_test_sum[6][32] = { /* * SHA-224 test vectors */ { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22, 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3, 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7, 0xE3, 0x6C, 0x9D, 0xA7 }, { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC, 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50, 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19, 0x52, 0x52, 0x25, 0x25 }, { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8, 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B, 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE, 0x4E, 0xE7, 0xAD, 0x67 }, /* * SHA-256 test vectors */ { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA, 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23, 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C, 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD }, { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8, 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39, 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67, 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 }, { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92, 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67, 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E, 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 } }; /* * Checkup routine */ int mbedtls_sha256_self_test(int verbose) { int i, j, k, buflen, ret = 0; unsigned char *buf; unsigned char sha256sum[32]; mbedtls_sha256_context ctx; buf = mbedtls_calloc(1024, sizeof(unsigned char)); if (NULL == buf) { if (verbose != 0) { mbedtls_printf("Buffer allocation failed\n"); } return (1); } mbedtls_sha256_init(&ctx); for (i = 0; i < 6; i++) { j = i % 3; k = i < 3; if (verbose != 0) { mbedtls_printf(" SHA-%d test #%d: ", 256 - k * 32, j + 1); } if ((ret = mbedtls_sha256_starts_ret(&ctx, k)) != 0) { goto fail; } if (j == 2) { memset(buf, 'a', buflen = 1000); for (j = 0; j < 1000; j++) { ret = mbedtls_sha256_update_ret(&ctx, buf, buflen); if (ret != 0) { goto fail; } } } else { ret = mbedtls_sha256_update_ret(&ctx, sha256_test_buf[j], sha256_test_buflen[j]); if (ret != 0) { goto fail; } } if ((ret = mbedtls_sha256_finish_ret(&ctx, sha256sum)) != 0) { goto fail; } if (memcmp(sha256sum, sha256_test_sum[i], 32 - k * 4) != 0) { ret = 1; goto fail; } if (verbose != 0) { mbedtls_printf("passed\n"); } } if (verbose != 0) { mbedtls_printf("\n"); } goto exit; fail: if (verbose != 0) { mbedtls_printf("failed\n"); } exit: mbedtls_sha256_free(&ctx); mbedtls_free(buf); return (ret); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_SHA256_C */