{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from keras.datasets import mnist\n", "from tensorflow.python.keras.backend import set_session\n", "from tensorflow.python.keras.models import load_model\n", "from tensorflow.keras.models import Model, load_model, Sequential\n", "from tensorflow.keras.layers import Input,Conv2D, Dense, MaxPooling2D, Softmax, Activation, BatchNormalization, Flatten, Dropout, DepthwiseConv2D\n", "from tensorflow.keras.layers import MaxPool2D, AvgPool2D, AveragePooling2D, GlobalAveragePooling2D,ZeroPadding2D,Input,Embedding,PReLU,Reshape\n", "from keras.callbacks import ModelCheckpoint\n", "from keras.callbacks import TensorBoard\n", "from keras.utils import np_utils\n", "from keras.preprocessing.image import ImageDataGenerator\n", "import keras.backend as K\n", "import tensorflow as tf\n", "import time\n", "\n", "from os import environ\n", "environ['CUDA_VISIBLE_DEVICES'] = '0'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "(x_train,y_train), (x_test,y_test) = mnist.load_data() " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "x_train = x_train.reshape(x_train.shape[0],x_train.shape[1],x_train.shape[2],1)/255\n", "x_test = x_test.reshape(x_test.shape[0],x_test.shape[1],x_test.shape[2],1)/255\n", "\n", "y_train = np_utils.to_categorical(y_train,num_classes=10) \n", "y_test = np_utils.to_categorical(y_test,num_classes=10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_valid\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Conv2D(dim0, (3,3), padding = 'valid',strides = (2, 2), input_shape = (28, 28, 1), name='ftr0'));model.add(BatchNormalization(name=\"bn0\"));model.add(Activation('relu', name=\"relu0\")); \n", " model.add(Conv2D(dim0*2, (3,3), padding = 'valid',strides = (2, 2), name='ftr1'));model.add(BatchNormalization(name=\"bn1\"));model.add(Activation('relu',name=\"relu1\")); \n", " model.add(Conv2D(dim0*4, (3,3), padding = 'valid',strides = (2, 2), name='ftr2'));model.add(BatchNormalization());model.add(Activation('relu')); \n", " \n", " model.add(GlobalAveragePooling2D(name='GAP'))\n", " model.add(Dense(10, name=\"fc1\"))\n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 4\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_same\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Conv2D(dim0, (3,3), padding = 'same',strides = (2, 2), input_shape = (28, 28, 1), name='ftr0'));model.add(BatchNormalization(name=\"bn0\"));model.add(Activation('relu', name=\"relu0\")); \n", " model.add(Conv2D(dim0*2, (3,3), padding = 'same',strides = (2, 2), name='ftr1'));model.add(BatchNormalization(name=\"bn1\"));model.add(Activation('relu',name=\"relu1\")); \n", " model.add(Conv2D(dim0*4, (3,3), padding = 'same',strides = (2, 2), name='ftr2'));model.add(BatchNormalization());model.add(Activation('relu')); \n", " \n", " model.add(GlobalAveragePooling2D(name='GAP'))\n", " model.add(Dense(10, name=\"fc1\"))\n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 4\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_fc\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Flatten(input_shape = (28, 28, 1), name='flatten'))\n", " model.add(Dense(10, name=\"fc3\"))\n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 4\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_dw\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Conv2D(dim0, (3,3), padding = 'same',strides = (2, 2), input_shape = (28, 28, 1), name='ftr0a'));model.add(BatchNormalization(name=\"bn0\"));model.add(Activation('relu', name=\"relu0\")); \n", " model.add(DepthwiseConv2D((3,3), padding='same', name='ftr0b'));model.add(BatchNormalization());model.add(Activation('relu', name=\"relu00\")); #32x32\n", " model.add(Conv2D(dim0*4, (3,3), padding = 'same',strides = (2, 2), name='ftr1a'));model.add(BatchNormalization(name=\"bn1\"));model.add(Activation('relu',name=\"relu1\")); \n", " model.add(DepthwiseConv2D((3,3), padding = 'same', depth_multiplier=2, name='ftr1b'));model.add(BatchNormalization());model.add(Activation('relu', name=\"relu11\")); \n", " \n", " model.add(GlobalAveragePooling2D(name='GAP'))\n", " model.add(Dense(10, name=\"fc1\"))\n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 4\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_rect\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Conv2D(dim0, (15,3), padding = 'same',strides = (2, 2), input_shape = (28, 28, 1), name='ftr0'));model.add(BatchNormalization(name=\"bn0\"));model.add(Activation('relu', name=\"relu0\")); \n", " model.add(Conv2D(dim0*2, (7,3), padding = 'same',strides = (2, 2), name='ftr1'));model.add(BatchNormalization(name=\"bn1\"));model.add(Activation('relu',name=\"relu1\")); \n", " model.add(Conv2D(dim0*4, (3,3), padding = 'same',strides = (2, 2), name='ftr2'));model.add(BatchNormalization());model.add(Activation('relu',name=\"relu2\")); \n", " \n", " model.add(GlobalAveragePooling2D(name='GAP'))\n", " model.add(Dense(10, name=\"fc1\"))\n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 4\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_nnom\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Conv2D(dim0, (3,3), padding = 'same',strides = (2, 2), input_shape = (28, 28, 1), name='ftr0'));model.add(BatchNormalization(name=\"bn0\"));model.add(Activation('relu', name=\"relu0\")); \n", " model.add(Conv2D(dim0*2, (3,3), padding = 'same',strides = (2, 2), name='ftr1'));model.add(BatchNormalization(name=\"bn1\"));model.add(Activation('relu',name=\"relu1\")); \n", " model.add(Conv2D(dim0*4, (3,3), padding = 'same',strides = (2, 2), name='ftr2'));model.add(BatchNormalization());model.add(Activation('relu',name=\"relu2\")); \n", " \n", " model.add(Conv2D(dim0*8, (4,4), padding = 'valid', name='ftr3'));\n", " model.add(Reshape((96,),name='reshape'))\n", " model.add(Dense(10, name=\"fc1\"))\n", " \n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 12\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist_arduino\n", "def init_model(dim0):\n", " model = Sequential()\n", " model.add(Conv2D(dim0, (3,3), padding = 'valid',strides = (2, 2), input_shape = (28, 28, 1), name='ftr0'));model.add(BatchNormalization(name=\"bn0\"));model.add(Activation('relu', name=\"relu0\")); \n", " model.add(Conv2D(dim0*3, (3,3), padding = 'valid',strides = (2, 2), name='ftr1'));model.add(BatchNormalization(name=\"bn1\"));model.add(Activation('relu',name=\"relu1\")); \n", " model.add(Conv2D(dim0*6, (3,3), padding = 'valid',strides = (2, 2), name='ftr2'));model.add(BatchNormalization());model.add(Activation('relu')); \n", " \n", " model.add(GlobalAveragePooling2D(name='GAP'))\n", " model.add(Dense(10, name=\"fc1\"))\n", " model.add(Activation('softmax', name=\"sm\"))\n", " return model\n", "\n", "DIM0 = 1\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#mnist resnet\n", "def init_model(dim0):\n", " inputs = Input(shape=(28,28,1))\n", " x = Conv2D(dim0, (3,3), padding = 'same',strides = (2, 2), name='ftr0')(inputs)\n", " x = BatchNormalization(name=\"bn0\")(x)\n", " x = Activation('relu', name=\"relu0\")(x)\n", " \n", " x = Conv2D(dim0*2, (3,3), padding = 'same',strides = (2, 2), name='ftr1')(x)\n", " x = BatchNormalization(name=\"bn1\")(x)\n", " x = Activation('relu', name=\"relu1\")(x)\n", " res = x\n", " \n", " x = Conv2D(dim0*2, (3,3), padding = 'same', name='ftr2')(x)\n", " x = BatchNormalization(name=\"bn2\")(x)\n", " \n", " x = res + x\n", " \n", " x = Conv2D(dim0*4, (3,3), padding = 'valid',strides = (2, 2), name='ftr3')(x)\n", " x = Flatten(name='reshape')(x)\n", " x = Dense(10, name=\"fc1\")(x)\n", " \n", " x = Activation('softmax', name=\"sm\")(x)\n", " model = Model(inputs = inputs, outputs=x)\n", " \n", " return model\n", "\n", "DIM0 = 12\n", "model=init_model(DIM0) \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "EPOCHS = 20\n", "model.compile(optimizer='adam', loss = \"categorical_crossentropy\", metrics = [\"categorical_accuracy\"]) \n", "H = model.fit(x_train, y_train, batch_size=64, epochs= EPOCHS, verbose= 1, validation_data = (x_test, y_test), shuffle=True) " ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "h5_file = \"mnist_resnet.h5\"\n", "model.save(h5_file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = x_test[1]\n", "for y in range(28):\n", " for x in range(28):\n", " print(\"%3d,\"%(int(data[y,x,0]*255)), end=\"\")\n", " print(\"\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 190ms/step\n" ] }, { "data": { "text/plain": [ "array([9.6214655e-14, 3.2803200e-18, 1.0000000e+00, 3.8382069e-22,\n", " 5.4997339e-24, 5.6444559e-32, 5.4293467e-14, 3.6996416e-21,\n", " 3.2022371e-21, 1.7273456e-21], dtype=float32)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result = model.predict(x_test[1:2])[0]\n", "result" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "tf29", "language": "python", "name": "py374_tf21" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }