This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
FreeRTOS-Kernel/Demo/AVR32_UC3/UTILS/compiler.h
2007-04-01 19:33:44 +00:00

881 lines
31 KiB
C

/* This header file is part of the ATMEL FREERTOS-0.9.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Compiler file for AVR32.
*
* This file defines commonly used types and macros.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support email: avr32@atmel.com
*
******************************************************************************/
/* Copyright (c) 2007, Atmel Corporation All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _COMPILER_H_
#define _COMPILER_H_
#if __GNUC__
# include <avr32/io.h>
#elif __ICCAVR32__ || __AAVR32__
# include <avr32/iouc3a0512.h>
# include <avr32/uc3a0512.h>
# if __ICCAVR32__
# include <intrinsics.h>
# endif
#else
# error Unknown compiler
#endif
#include "preprocessor.h"
//_____ D E C L A R A T I O N S ____________________________________________
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
#include <stddef.h>
#include <stdlib.h>
/*! \name Usual Types
*/
//! @{
typedef unsigned char Bool; //!< Boolean.
typedef unsigned char U8 ; //!< 8-bit unsigned integer.
typedef unsigned short int U16; //!< 16-bit unsigned integer.
typedef unsigned long int U32; //!< 32-bit unsigned integer.
typedef unsigned long long int U64; //!< 64-bit unsigned integer.
typedef signed char S8 ; //!< 8-bit signed integer.
typedef signed short int S16; //!< 16-bit signed integer.
typedef signed long int S32; //!< 32-bit signed integer.
typedef signed long long int S64; //!< 64-bit signed integer.
typedef float F32; //!< 32-bit floating-point number.
typedef double F64; //!< 64-bit floating-point number.
//! @}
/*! \name Status Types
*/
//! @{
typedef Bool Status_bool_t; //!< Boolean status.
typedef U8 Status_t; //!< 8-bit-coded status.
//! @}
#if __ICCAVR32__
/*! \name Compiler Keywords
*
* Translation of some keywords from GNU GCC for AVR32 to IAR Embedded Workbench for Atmel AVR32.
*/
//! @{
#define __asm__ asm
#define __inline__ inline
#define __volatile__
//! @}
#endif
/*! \name Aliasing Aggregate Types
*/
//! @{
//! 16-bit union.
typedef union
{
U16 u16 ;
U8 u8 [2];
} Union16;
//! 32-bit union.
typedef union
{
U32 u32 ;
U16 u16[2];
U8 u8 [4];
} Union32;
//! 64-bit union.
typedef union
{
U64 u64 ;
U32 u32[2];
U16 u16[4];
U8 u8 [8];
} Union64;
//! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
U64 *u64ptr;
U32 *u32ptr;
U16 *u16ptr;
U8 *u8ptr ;
} UnionPtr;
//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
volatile U64 *u64ptr;
volatile U32 *u32ptr;
volatile U16 *u16ptr;
volatile U8 *u8ptr ;
} UnionVPtr;
//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
const U64 *u64ptr;
const U32 *u32ptr;
const U16 *u16ptr;
const U8 *u8ptr ;
} UnionCPtr;
//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
const volatile U64 *u64ptr;
const volatile U32 *u32ptr;
const volatile U16 *u16ptr;
const volatile U8 *u8ptr ;
} UnionCVPtr;
//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
U64 *u64ptr;
U32 *u32ptr;
U16 *u16ptr;
U8 *u8ptr ;
} StructPtr;
//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
volatile U64 *u64ptr;
volatile U32 *u32ptr;
volatile U16 *u16ptr;
volatile U8 *u8ptr ;
} StructVPtr;
//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
const U64 *u64ptr;
const U32 *u32ptr;
const U16 *u16ptr;
const U8 *u8ptr ;
} StructCPtr;
//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
const volatile U64 *u64ptr;
const volatile U32 *u32ptr;
const volatile U16 *u16ptr;
const volatile U8 *u8ptr ;
} StructCVPtr;
//! @}
#endif // __AVR32_ABI_COMPILER__
//_____ M A C R O S ________________________________________________________
/*! \name Usual Constants
*/
//! @{
#define DISABLE 0
#define ENABLE 1
#define DISABLED 0
#define ENABLED 1
#define OFF 0
#define ON 1
#define FALSE 0
#define TRUE 1
#define KO 0
#define OK 1
#define PASS 0
#define FAIL 1
#define LOW 0
#define HIGH 1
#define CLR 0
#define SET 1
//! @}
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
/*! \name Bit-Field Handling Macros
*/
//! @{
/*! \brief Reads the bits of a value specified by a given bit-mask.
*
* \param value Value to read bits from.
* \param mask Bit-mask indicating bits to read.
*
* \return Read bits.
*/
#define Rd_bits( value, mask) ((value) & (mask))
/*! \brief Writes the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue to write bits to.
* \param mask Bit-mask indicating bits to write.
* \param bits Bits to write.
*
* \return Resulting value with written bits.
*/
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\
((bits ) & (mask)))
/*! \brief Tests the bits of a value specified by a given bit-mask.
*
* \param value Value of which to test bits.
* \param mask Bit-mask indicating bits to test.
*
* \return \c 1 if at least one of the tested bits is set, else \c 0.
*/
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0)
/*! \brief Clears the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue of which to clear bits.
* \param mask Bit-mask indicating bits to clear.
*
* \return Resulting value with cleared bits.
*/
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))
/*! \brief Sets the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue of which to set bits.
* \param mask Bit-mask indicating bits to set.
*
* \return Resulting value with set bits.
*/
#define Set_bits(lvalue, mask) ((lvalue) |= (mask))
/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue of which to toggle bits.
* \param mask Bit-mask indicating bits to toggle.
*
* \return Resulting value with toggled bits.
*/
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))
/*! \brief Reads the bit-field of a value specified by a given bit-mask.
*
* \param value Value to read a bit-field from.
* \param mask Bit-mask indicating the bit-field to read.
*
* \return Read bit-field.
*/
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask))
/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue to write a bit-field to.
* \param mask Bit-mask indicating the bit-field to write.
* \param bitfield Bit-field to write.
*
* \return Resulting value with written bit-field.
*/
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask)))
//! @}
/*! \brief This macro is used to test fatal errors.
*
* The macro tests if the expression is FALSE. If it is, a fatal error is
* detected and the application hangs up.
*
* \param expr Expression to evaluate and supposed to be nonzero.
*/
#ifdef _ASSERT_ENABLE_
#define Assert(expr) \
{\
if (!(expr)) while (TRUE);\
}
#else
#define Assert(expr)
#endif
/*! \name Zero-Bit Counting Macros
*
* Under AVR32-GCC, __builtin_clz and __builtin_ctz behave like macros when
* applied to constant expressions (values known at compile time), so they are
* more optimized than the use of the corresponding assembly instructions and
* they can be used as constant expressions e.g. to initialize objects having
* static storage duration, and like the corresponding assembly instructions
* when applied to non-constant expressions (values unknown at compile time), so
* they are more optimized than an assembly periphrasis. Hence, clz and ctz
* ensure a possible and optimized behavior for both constant and non-constant
* expressions.
*/
//! @{
/*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
*
* \param u Value of which to count the leading zero bits.
*
* \return The count of leading zero bits in \a u.
*/
#if __GNUC__
#define clz(u) __builtin_clz(u)
#elif __ICCAVR32__
#define clz(u) __count_leading_zeros(u)
#endif
/*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
*
* \param u Value of which to count the trailing zero bits.
*
* \return The count of trailing zero bits in \a u.
*/
#if __GNUC__
#define ctz(u) __builtin_ctz(u)
#elif __ICCAVR32__
#define ctz(u) __count_trailing_zeros(u)
#endif
//! @}
/*! \name Alignment Macros
*/
//! @{
/*! \brief Tests alignment of the number \a val with the \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
*/
#define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) )
/*! \brief Gets alignment of the number \a val with respect to the \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return Alignment of the number \a val with respect to the \a n boundary.
*/
#define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) )
/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
*
* \param lval Input/output lvalue.
* \param n Boundary.
* \param alg Alignment.
*
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
*/
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) )
/*! \brief Aligns the number \a val with the upper \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return Value resulting from the number \a val aligned with the upper \a n boundary.
*/
#define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1))
/*! \brief Aligns the number \a val with the lower \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return Value resulting from the number \a val aligned with the lower \a n boundary.
*/
#define Align_down(val, n ) ( (val) & ~((n) - 1))
//! @}
/*! \name Mathematics Macros
*
* The same considerations as for clz and ctz apply here but AVR32-GCC does not
* provide built-in functions to access the assembly instructions abs, min and
* max and it does not produce them by itself in most cases, so two sets of
* macros are defined here:
* - Abs, Min and Max to apply to constant expressions (values known at
* compile time);
* - abs, min and max to apply to non-constant expressions (values unknown at
* compile time).
*/
//! @{
/*! \brief Takes the absolute value of \a a.
*
* \param a Input value.
*
* \return Absolute value of \a a.
*
* \note More optimized if only used with values known at compile time.
*/
#define Abs(a) (((a) < 0 ) ? -(a) : (a))
/*! \brief Takes the minimal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Min(a, b) (((a) < (b)) ? (a) : (b))
/*! \brief Takes the maximal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Max(a, b) (((a) > (b)) ? (a) : (b))
/*! \brief Takes the absolute value of \a a.
*
* \param a Input value.
*
* \return Absolute value of \a a.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if __GNUC__
#define abs(a) \
(\
{\
int __value = (a);\
__asm__ ("abs\t%0" : "+r" (__value) : : "cc");\
__value;\
}\
)
#elif __ICCAVR32__
#define abs(a) Abs(a)
#endif
/*! \brief Takes the minimal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if __GNUC__
#define min(a, b) \
(\
{\
int __value, __arg_a = (a), __arg_b = (b);\
__asm__ ("min\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\
__value;\
}\
)
#elif __ICCAVR32__
#define min(a, b) Min(a, b)
#endif
/*! \brief Takes the maximal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if __GNUC__
#define max(a, b) \
(\
{\
int __value, __arg_a = (a), __arg_b = (b);\
__asm__ ("max\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\
__value;\
}\
)
#elif __ICCAVR32__
#define max(a, b) Max(a, b)
#endif
//! @}
/*! \brief Calls the routine at address \a addr.
*
* It generates a long call opcode.
*
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
* it is invoked from the CPU supervisor mode.
*
* \param addr Address of the routine to call.
*
* \note It may be used as a long jump opcode in some special cases.
*/
#define Long_call(addr) ((*(void (*)(void))(addr))())
/*! \brief Resets the CPU by software.
*
* \warning It shall not be called from the CPU application mode.
*/
#if __GNUC__
#define Reset_CPU() \
(\
{\
__asm__ __volatile__ (\
"lda.w r8, _start\n\t"\
"lddpc r9, 1f\n\t"\
"stm --sp, r8-r9\n\t"\
"mfsr r8, %[SR]\n\t"\
"bfextu r8, r8, %[SR_MX_OFFSET], %[SR_MX_SIZE]\n\t"\
"cp.w r8, 0b001\n\t"\
"breq 0f\n\t"\
"rete\n"\
"0:\n\t"\
"rets\n\t"\
".balign 4\n"\
"1:\n\t"\
".word %[RESET_SR]"\
:\
: [SR] "i" (AVR32_SR),\
[SR_MX_OFFSET] "i" (AVR32_SR_M0_OFFSET),\
[SR_MX_SIZE] "i" (AVR32_SR_M0_SIZE + AVR32_SR_M1_SIZE + AVR32_SR_M2_SIZE),\
[RESET_SR] "i" (AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | AVR32_SR_M0_MASK)\
);\
}\
)
#elif __ICCAVR32__
#define Reset_CPU() \
{\
extern void *volatile __program_start;\
__asm__ __volatile__ (\
"mov r8, LWRD(__program_start)\n\t"\
"orh r8, HWRD(__program_start)\n\t"\
"mov r9, LWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | AVR32_SR_M0_MASK)")\n\t"\
"orh r9, HWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | AVR32_SR_M0_MASK)")\n\t"\
"stm --sp, r8-r9\n\t"\
"mfsr r8, "ASTRINGZ(AVR32_SR)"\n\t"\
"bfextu r8, r8, "ASTRINGZ(AVR32_SR_M0_OFFSET)", "ASTRINGZ(AVR32_SR_M0_SIZE + AVR32_SR_M1_SIZE + AVR32_SR_M2_SIZE)"\n\t"\
"cp.w r8, 001b\n\t"\
"breq $ + 4\n\t"\
"rete\n\t"\
"rets"\
);\
__program_start;\
}
#endif
/*! \name CPU Status Register Macros
*/
//! @{
/*! \brief Disables all exceptions.
*/
#if __GNUC__
#define Disable_global_exception() ({__asm__ __volatile__ ("ssrf\t%0" : : "i" (AVR32_SR_EM_OFFSET));})
#elif __ICCAVR32__
#define Disable_global_exception() (__set_status_flag(AVR32_SR_EM_OFFSET))
#endif
/*! \brief Enables all exceptions.
*/
#if __GNUC__
#define Enable_global_exception() ({__asm__ __volatile__ ("csrf\t%0" : : "i" (AVR32_SR_EM_OFFSET));})
#elif __ICCAVR32__
#define Enable_global_exception() (__clear_status_flag(AVR32_SR_EM_OFFSET))
#endif
/*! \brief Disables all interrupts.
*/
#if __GNUC__
#define Disable_global_interrupt() ({__asm__ __volatile__ ("ssrf\t%0\n\tnop\n\tnop" : : "i" (AVR32_SR_GM_OFFSET));})
#elif __ICCAVR32__
#define Disable_global_interrupt() {__asm__ __volatile__ ("ssrf\t"ASTRINGZ(AVR32_SR_GM_OFFSET)"\n\tnop\n\tnop");}
#endif
/*! \brief Enables all interrupts.
*/
#if __GNUC__
#define Enable_global_interrupt() ({__asm__ __volatile__ ("csrf\t%0" : : "i" (AVR32_SR_GM_OFFSET));})
#elif __ICCAVR32__
#define Enable_global_interrupt() (__enable_interrupt())
#endif
/*! \brief Disables interrupt level \a int_lev.
*
* \param int_lev Interrupt level to disable (0 to 3).
*/
#if __GNUC__
#define Disable_interrupt_level(int_lev) ({__asm__ __volatile__ ("ssrf\t%0\n\tnop\n\tnop" : : "i" (TPASTE3(AVR32_SR_I, int_lev, M_OFFSET)));})
#elif __ICCAVR32__
#define Disable_interrupt_level(int_lev) {__asm__ __volatile__ ("ssrf\t"ASTRINGZ(TPASTE3(AVR32_SR_I, int_lev, M_OFFSET))"\n\tnop\n\tnop");}
#endif
/*! \brief Enables interrupt level \a int_lev.
*
* \param int_lev Interrupt level to enable (0 to 3).
*/
#if __GNUC__
#define Enable_interrupt_level(int_lev) ({__asm__ __volatile__ ("csrf\t%0" : : "i" (TPASTE3(AVR32_SR_I, int_lev, M_OFFSET)));})
#elif __ICCAVR32__
#define Enable_interrupt_level(int_lev) (__clear_status_flag(TPASTE3(AVR32_SR_I, int_lev, M_OFFSET)))
#endif
//! @}
/*! \name System Register Access Macros
*/
//! @{
/*! \brief Gets the value of the \a sysreg system register.
*
* \param sysreg Address of the system register of which to get the value.
*
* \return Value of the \a sysreg system register.
*/
#if __GNUC__
#define Get_system_register(sysreg) __builtin_mfsr(sysreg)
#elif __ICCAVR32__
#define Get_system_register(sysreg) __get_system_register(sysreg)
#endif
/*! \brief Sets the value of the \a sysreg system register to \a value.
*
* \param sysreg Address of the system register of which to set the value.
* \param value Value to set the \a sysreg system register to.
*/
#if __GNUC__
#define Set_system_register(sysreg, value) __builtin_mtsr(sysreg, value)
#elif __ICCAVR32__
#define Set_system_register(sysreg, value) __set_system_register(sysreg, value)
#endif
//! @}
#endif // __AVR32_ABI_COMPILER__
//! Boolean evaluating MCU little endianism.
#if (__GNUC__ && __AVR32__) || (__ICCAVR32__ || __AAVR32__)
#define LITTLE_ENDIAN_MCU FALSE
#endif
// Check that MCU endianism is correctly defined.
#ifndef LITTLE_ENDIAN_MCU
#error YOU MUST define the MCU endianism with LITTLE_ENDIAN_MCU: either FALSE or TRUE
#endif
//! Boolean evaluating MCU big endianism.
#define BIG_ENDIAN_MCU (!LITTLE_ENDIAN_MCU)
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
/*! \name U16/U32/U64 MCU Endianism Handling Macros
*/
//! @{
#if LITTLE_ENDIAN_MCU
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16.
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16.
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
#define LSB0W(u32) (((U8 *)&(u32))[0]) //!< Least significant byte of 1st rank of \a u32.
#define LSB1W(u32) (((U8 *)&(u32))[1]) //!< Least significant byte of 2nd rank of \a u32.
#define LSB2W(u32) (((U8 *)&(u32))[2]) //!< Least significant byte of 3rd rank of \a u32.
#define LSB3W(u32) (((U8 *)&(u32))[3]) //!< Least significant byte of 4th rank of \a u32.
#define MSB3W(u32) LSB0W(u32) //!< Most significant byte of 1st rank of \a u32.
#define MSB2W(u32) LSB1W(u32) //!< Most significant byte of 2nd rank of \a u32.
#define MSB1W(u32) LSB2W(u32) //!< Most significant byte of 3rd rank of \a u32.
#define MSB0W(u32) LSB3W(u32) //!< Most significant byte of 4th rank of \a u32.
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
#define LSH0(u64) (((U16 *)&(u64))[0]) //!< Least significant half-word of 1st rank of \a u64.
#define LSH1(u64) (((U16 *)&(u64))[1]) //!< Least significant half-word of 2nd rank of \a u64.
#define LSH2(u64) (((U16 *)&(u64))[2]) //!< Least significant half-word of 3rd rank of \a u64.
#define LSH3(u64) (((U16 *)&(u64))[3]) //!< Least significant half-word of 4th rank of \a u64.
#define MSH3(u64) LSH0(u64) //!< Most significant half-word of 1st rank of \a u64.
#define MSH2(u64) LSH1(u64) //!< Most significant half-word of 2nd rank of \a u64.
#define MSH1(u64) LSH2(u64) //!< Most significant half-word of 3rd rank of \a u64.
#define MSH0(u64) LSH3(u64) //!< Most significant half-word of 4th rank of \a u64.
#define LSB0D(u64) (((U8 *)&(u64))[0]) //!< Least significant byte of 1st rank of \a u64.
#define LSB1D(u64) (((U8 *)&(u64))[1]) //!< Least significant byte of 2nd rank of \a u64.
#define LSB2D(u64) (((U8 *)&(u64))[2]) //!< Least significant byte of 3rd rank of \a u64.
#define LSB3D(u64) (((U8 *)&(u64))[3]) //!< Least significant byte of 4th rank of \a u64.
#define LSB4D(u64) (((U8 *)&(u64))[4]) //!< Least significant byte of 5th rank of \a u64.
#define LSB5D(u64) (((U8 *)&(u64))[5]) //!< Least significant byte of 6th rank of \a u64.
#define LSB6D(u64) (((U8 *)&(u64))[6]) //!< Least significant byte of 7th rank of \a u64.
#define LSB7D(u64) (((U8 *)&(u64))[7]) //!< Least significant byte of 8th rank of \a u64.
#define MSB7D(u64) LSB0D(u64) //!< Most significant byte of 1st rank of \a u64.
#define MSB6D(u64) LSB1D(u64) //!< Most significant byte of 2nd rank of \a u64.
#define MSB5D(u64) LSB2D(u64) //!< Most significant byte of 3rd rank of \a u64.
#define MSB4D(u64) LSB3D(u64) //!< Most significant byte of 4th rank of \a u64.
#define MSB3D(u64) LSB4D(u64) //!< Most significant byte of 5th rank of \a u64.
#define MSB2D(u64) LSB5D(u64) //!< Most significant byte of 6th rank of \a u64.
#define MSB1D(u64) LSB6D(u64) //!< Most significant byte of 7th rank of \a u64.
#define MSB0D(u64) LSB7D(u64) //!< Most significant byte of 8th rank of \a u64.
#else // BIG_ENDIAN_MCU
#define MSB(u16) (((U8 *)&(u16))[0]) //!< Most significant byte of \a u16.
#define LSB(u16) (((U8 *)&(u16))[1]) //!< Least significant byte of \a u16.
#define MSH(u32) (((U16 *)&(u32))[0]) //!< Most significant half-word of \a u32.
#define LSH(u32) (((U16 *)&(u32))[1]) //!< Least significant half-word of \a u32.
#define MSB0W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 1st rank of \a u32.
#define MSB1W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 2nd rank of \a u32.
#define MSB2W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 3rd rank of \a u32.
#define MSB3W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 4th rank of \a u32.
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 1st rank of \a u32.
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 4th rank of \a u32.
#define MSW(u64) (((U32 *)&(u64))[0]) //!< Most significant word of \a u64.
#define LSW(u64) (((U32 *)&(u64))[1]) //!< Least significant word of \a u64.
#define MSH0(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 1st rank of \a u64.
#define MSH1(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 2nd rank of \a u64.
#define MSH2(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 3rd rank of \a u64.
#define MSH3(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 4th rank of \a u64.
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 1st rank of \a u64.
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 2nd rank of \a u64.
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 3rd rank of \a u64.
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 4th rank of \a u64.
#define MSB0D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 1st rank of \a u64.
#define MSB1D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 2nd rank of \a u64.
#define MSB2D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 3rd rank of \a u64.
#define MSB3D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 4th rank of \a u64.
#define MSB4D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 5th rank of \a u64.
#define MSB5D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 6th rank of \a u64.
#define MSB6D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 7th rank of \a u64.
#define MSB7D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 8th rank of \a u64.
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 1st rank of \a u64.
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 2nd rank of \a u64.
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 3rd rank of \a u64.
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 4th rank of \a u64.
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 5th rank of \a u64.
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 6th rank of \a u64.
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 7th rank of \a u64.
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 8th rank of \a u64.
#endif
//! @}
/*! \name Endianism Conversion Macros
*
* The same considerations as for clz and ctz apply here but AVR32-GCC's
* __builtin_bswap_16 and __builtin_bswap_32 do not behave like macros when
* applied to constant expressions, so two sets of macros are defined here:
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
* at compile time);
* - swap16, swap32 and swap64 to apply to non-constant expressions (values
* unknown at compile time).
*/
//! @{
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\
((U16)(u16) << 8)))
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\
((U32)Swap16((U32)(u32)) << 16)))
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\
((U64)Swap32((U64)(u64)) << 32)))
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if __GNUC__
#define swap16(u16) __builtin_bswap_16(u16)
#elif __ICCAVR32__
#define swap16(u16) Swap16(u16)
#endif
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if __GNUC__
#define swap32(u32) __builtin_bswap_32(u32)
#elif __ICCAVR32__
#define swap32(u32) Swap32(u32)
#endif
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\
((U64)swap32((U64)(u64)) << 32)))
//! @}
#endif // __AVR32_ABI_COMPILER__
#endif // _COMPILER_H_