This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
FreeRTOS-Kernel/include/message_buffer.h
Ravishankar Bhagavandas 0b46492740
Add callback overrides for stream buffer and message buffers (#437)
* Let each stream/message can use its own sbSEND_COMPLETED

In FreeRTOS.h, set the default value of configUSE_SB_COMPLETED_CALLBACK
to zero, and add additional space for the function pointer when
the buffer created statically.

In stream_buffer.c, modify the macro of sbSEND_COMPLETED which let
the stream buffer to use its own implementation, and then add an
pointer to the stream buffer's structure, and modify the
implementation of the buffer creating and initializing

Co-authored-by: eddie9712 <qw1562435@gmail.com>
2022-06-20 17:48:34 -07:00

856 lines
40 KiB
C

/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*
* Message buffers build functionality on top of FreeRTOS stream buffers.
* Whereas stream buffers are used to send a continuous stream of data from one
* task or interrupt to another, message buffers are used to send variable
* length discrete messages from one task or interrupt to another. Their
* implementation is light weight, making them particularly suited for interrupt
* to task and core to core communication scenarios.
*
* ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
* implementation (so also the message buffer implementation, as message buffers
* are built on top of stream buffers) assumes there is only one task or
* interrupt that will write to the buffer (the writer), and only one task or
* interrupt that will read from the buffer (the reader). It is safe for the
* writer and reader to be different tasks or interrupts, but, unlike other
* FreeRTOS objects, it is not safe to have multiple different writers or
* multiple different readers. If there are to be multiple different writers
* then the application writer must place each call to a writing API function
* (such as xMessageBufferSend()) inside a critical section and set the send
* block time to 0. Likewise, if there are to be multiple different readers
* then the application writer must place each call to a reading API function
* (such as xMessageBufferRead()) inside a critical section and set the receive
* timeout to 0.
*
* Message buffers hold variable length messages. To enable that, when a
* message is written to the message buffer an additional sizeof( size_t ) bytes
* are also written to store the message's length (that happens internally, with
* the API function). sizeof( size_t ) is typically 4 bytes on a 32-bit
* architecture, so writing a 10 byte message to a message buffer on a 32-bit
* architecture will actually reduce the available space in the message buffer
* by 14 bytes (10 byte are used by the message, and 4 bytes to hold the length
* of the message).
*/
#ifndef FREERTOS_MESSAGE_BUFFER_H
#define FREERTOS_MESSAGE_BUFFER_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h must appear in source files before include message_buffer.h"
#endif
/* Message buffers are built onto of stream buffers. */
#include "stream_buffer.h"
/* *INDENT-OFF* */
#if defined( __cplusplus )
extern "C" {
#endif
/* *INDENT-ON* */
/**
* Type by which message buffers are referenced. For example, a call to
* xMessageBufferCreate() returns an MessageBufferHandle_t variable that can
* then be used as a parameter to xMessageBufferSend(), xMessageBufferReceive(),
* etc.
*/
typedef void * MessageBufferHandle_t;
/*-----------------------------------------------------------*/
/**
* message_buffer.h
*
* @code{c}
* MessageBufferHandle_t xMessageBufferCreate( size_t xBufferSizeBytes );
* @endcode
*
* Creates a new message buffer using dynamically allocated memory. See
* xMessageBufferCreateStatic() for a version that uses statically allocated
* memory (memory that is allocated at compile time).
*
* configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in
* FreeRTOSConfig.h for xMessageBufferCreate() to be available.
*
* @param xBufferSizeBytes The total number of bytes (not messages) the message
* buffer will be able to hold at any one time. When a message is written to
* the message buffer an additional sizeof( size_t ) bytes are also written to
* store the message's length. sizeof( size_t ) is typically 4 bytes on a
* 32-bit architecture, so on most 32-bit architectures a 10 byte message will
* take up 14 bytes of message buffer space.
*
* @param pxSendCompletedCallback Callback invoked when a send operation to the
* message buffer is complete. If the parameter is NULL or xMessageBufferCreate()
* is called without the parameter, then it will use the default implementation
* provided by sbSEND_COMPLETED macro. To enable the callback,
* configUSE_SB_COMPLETED_CALLBACK must be set to 1 in FreeRTOSConfig.h.
*
* @param pxReceiveCompletedCallback Callback invoked when a receive operation from
* the message buffer is complete. If the parameter is NULL or xMessageBufferCreate()
* is called without the parameter, it will use the default implementation provided
* by sbRECEIVE_COMPLETED macro. To enable the callback,
* configUSE_SB_COMPLETED_CALLBACK must be set to 1 in FreeRTOSConfig.h.
*
* @return If NULL is returned, then the message buffer cannot be created
* because there is insufficient heap memory available for FreeRTOS to allocate
* the message buffer data structures and storage area. A non-NULL value being
* returned indicates that the message buffer has been created successfully -
* the returned value should be stored as the handle to the created message
* buffer.
*
* Example use:
* @code{c}
*
* void vAFunction( void )
* {
* MessageBufferHandle_t xMessageBuffer;
* const size_t xMessageBufferSizeBytes = 100;
*
* // Create a message buffer that can hold 100 bytes. The memory used to hold
* // both the message buffer structure and the messages themselves is allocated
* // dynamically. Each message added to the buffer consumes an additional 4
* // bytes which are used to hold the length of the message.
* xMessageBuffer = xMessageBufferCreate( xMessageBufferSizeBytes );
*
* if( xMessageBuffer == NULL )
* {
* // There was not enough heap memory space available to create the
* // message buffer.
* }
* else
* {
* // The message buffer was created successfully and can now be used.
* }
*
* @endcode
* \defgroup xMessageBufferCreate xMessageBufferCreate
* \ingroup MessageBufferManagement
*/
#define xMessageBufferCreate( xBufferSizeBytes ) \
( MessageBufferHandle_t ) xStreamBufferGenericCreate( xBufferSizeBytes, ( size_t ) 0, pdTRUE, NULL, NULL )
#if ( configUSE_SB_COMPLETED_CALLBACK == 1 )
#define xMessageBufferCreateWithCallback( xBufferSizeBytes, pxSendCompletedCallback, pxReceiveCompletedCallback ) \
( MessageBufferHandle_t ) xStreamBufferGenericCreate( xBufferSizeBytes, ( size_t ) 0, pdTRUE, pxSendCompletedCallback, pxReceiveCompletedCallback )
#endif
/**
* message_buffer.h
*
* @code{c}
* MessageBufferHandle_t xMessageBufferCreateStatic( size_t xBufferSizeBytes,
* uint8_t *pucMessageBufferStorageArea,
* StaticMessageBuffer_t *pxStaticMessageBuffer );
* @endcode
* Creates a new message buffer using statically allocated memory. See
* xMessageBufferCreate() for a version that uses dynamically allocated memory.
*
* @param xBufferSizeBytes The size, in bytes, of the buffer pointed to by the
* pucMessageBufferStorageArea parameter. When a message is written to the
* message buffer an additional sizeof( size_t ) bytes are also written to store
* the message's length. sizeof( size_t ) is typically 4 bytes on a 32-bit
* architecture, so on most 32-bit architecture a 10 byte message will take up
* 14 bytes of message buffer space. The maximum number of bytes that can be
* stored in the message buffer is actually (xBufferSizeBytes - 1).
*
* @param pucMessageBufferStorageArea Must point to a uint8_t array that is at
* least xBufferSizeBytes big. This is the array to which messages are
* copied when they are written to the message buffer.
*
* @param pxStaticMessageBuffer Must point to a variable of type
* StaticMessageBuffer_t, which will be used to hold the message buffer's data
* structure.
*
* @param pxSendCompletedCallback Callback invoked when a new message is sent to the message buffer.
* If the parameter is NULL or xMessageBufferCreate() is called without the parameter, then it will use the default
* implementation provided by sbSEND_COMPLETED macro. To enable the callback,
* configUSE_SB_COMPLETED_CALLBACK must be set to 1 in FreeRTOSConfig.h.
*
* @param pxReceiveCompletedCallback Callback invoked when a message is read from a
* message buffer. If the parameter is NULL or xMessageBufferCreate() is called without the parameter, it will
* use the default implementation provided by sbRECEIVE_COMPLETED macro. To enable the callback,
* configUSE_SB_COMPLETED_CALLBACK must be set to 1 in FreeRTOSConfig.h.
*
* @return If the message buffer is created successfully then a handle to the
* created message buffer is returned. If either pucMessageBufferStorageArea or
* pxStaticmessageBuffer are NULL then NULL is returned.
*
* Example use:
* @code{c}
*
* // Used to dimension the array used to hold the messages. The available space
* // will actually be one less than this, so 999.
#define STORAGE_SIZE_BYTES 1000
*
* // Defines the memory that will actually hold the messages within the message
* // buffer.
* static uint8_t ucStorageBuffer[ STORAGE_SIZE_BYTES ];
*
* // The variable used to hold the message buffer structure.
* StaticMessageBuffer_t xMessageBufferStruct;
*
* void MyFunction( void )
* {
* MessageBufferHandle_t xMessageBuffer;
*
* xMessageBuffer = xMessageBufferCreateStatic( sizeof( ucStorageBuffer ),
* ucStorageBuffer,
* &xMessageBufferStruct );
*
* // As neither the pucMessageBufferStorageArea or pxStaticMessageBuffer
* // parameters were NULL, xMessageBuffer will not be NULL, and can be used to
* // reference the created message buffer in other message buffer API calls.
*
* // Other code that uses the message buffer can go here.
* }
*
* @endcode
* \defgroup xMessageBufferCreateStatic xMessageBufferCreateStatic
* \ingroup MessageBufferManagement
*/
#define xMessageBufferCreateStatic( xBufferSizeBytes, pucMessageBufferStorageArea, pxStaticMessageBuffer ) \
( MessageBufferHandle_t ) xStreamBufferGenericCreateStatic( xBufferSizeBytes, 0, pdTRUE, pucMessageBufferStorageArea, pxStaticMessageBuffer, NULL, NULL )
#if ( configUSE_SB_COMPLETED_CALLBACK == 1 )
#define xMessageBufferCreateStaticWithCallback( xBufferSizeBytes, pucMessageBufferStorageArea, pxStaticMessageBuffer, pxSendCompletedCallback, pxReceiveCompletedCallback ) \
( MessageBufferHandle_t ) xStreamBufferGenericCreateStatic( xBufferSizeBytes, 0, pdTRUE, pucMessageBufferStorageArea, pxStaticMessageBuffer, pxSendCompletedCallback, pxReceiveCompletedCallback )
#endif
/**
* message_buffer.h
*
* @code{c}
* size_t xMessageBufferSend( MessageBufferHandle_t xMessageBuffer,
* const void *pvTxData,
* size_t xDataLengthBytes,
* TickType_t xTicksToWait );
* @endcode
*
* Sends a discrete message to the message buffer. The message can be any
* length that fits within the buffer's free space, and is copied into the
* buffer.
*
* ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
* implementation (so also the message buffer implementation, as message buffers
* are built on top of stream buffers) assumes there is only one task or
* interrupt that will write to the buffer (the writer), and only one task or
* interrupt that will read from the buffer (the reader). It is safe for the
* writer and reader to be different tasks or interrupts, but, unlike other
* FreeRTOS objects, it is not safe to have multiple different writers or
* multiple different readers. If there are to be multiple different writers
* then the application writer must place each call to a writing API function
* (such as xMessageBufferSend()) inside a critical section and set the send
* block time to 0. Likewise, if there are to be multiple different readers
* then the application writer must place each call to a reading API function
* (such as xMessageBufferRead()) inside a critical section and set the receive
* block time to 0.
*
* Use xMessageBufferSend() to write to a message buffer from a task. Use
* xMessageBufferSendFromISR() to write to a message buffer from an interrupt
* service routine (ISR).
*
* @param xMessageBuffer The handle of the message buffer to which a message is
* being sent.
*
* @param pvTxData A pointer to the message that is to be copied into the
* message buffer.
*
* @param xDataLengthBytes The length of the message. That is, the number of
* bytes to copy from pvTxData into the message buffer. When a message is
* written to the message buffer an additional sizeof( size_t ) bytes are also
* written to store the message's length. sizeof( size_t ) is typically 4 bytes
* on a 32-bit architecture, so on most 32-bit architecture setting
* xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
* bytes (20 bytes of message data and 4 bytes to hold the message length).
*
* @param xTicksToWait The maximum amount of time the calling task should remain
* in the Blocked state to wait for enough space to become available in the
* message buffer, should the message buffer have insufficient space when
* xMessageBufferSend() is called. The calling task will never block if
* xTicksToWait is zero. The block time is specified in tick periods, so the
* absolute time it represents is dependent on the tick frequency. The macro
* pdMS_TO_TICKS() can be used to convert a time specified in milliseconds into
* a time specified in ticks. Setting xTicksToWait to portMAX_DELAY will cause
* the task to wait indefinitely (without timing out), provided
* INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. Tasks do not use any
* CPU time when they are in the Blocked state.
*
* @return The number of bytes written to the message buffer. If the call to
* xMessageBufferSend() times out before there was enough space to write the
* message into the message buffer then zero is returned. If the call did not
* time out then xDataLengthBytes is returned.
*
* Example use:
* @code{c}
* void vAFunction( MessageBufferHandle_t xMessageBuffer )
* {
* size_t xBytesSent;
* uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
* char *pcStringToSend = "String to send";
* const TickType_t x100ms = pdMS_TO_TICKS( 100 );
*
* // Send an array to the message buffer, blocking for a maximum of 100ms to
* // wait for enough space to be available in the message buffer.
* xBytesSent = xMessageBufferSend( xMessageBuffer, ( void * ) ucArrayToSend, sizeof( ucArrayToSend ), x100ms );
*
* if( xBytesSent != sizeof( ucArrayToSend ) )
* {
* // The call to xMessageBufferSend() times out before there was enough
* // space in the buffer for the data to be written.
* }
*
* // Send the string to the message buffer. Return immediately if there is
* // not enough space in the buffer.
* xBytesSent = xMessageBufferSend( xMessageBuffer, ( void * ) pcStringToSend, strlen( pcStringToSend ), 0 );
*
* if( xBytesSent != strlen( pcStringToSend ) )
* {
* // The string could not be added to the message buffer because there was
* // not enough free space in the buffer.
* }
* }
* @endcode
* \defgroup xMessageBufferSend xMessageBufferSend
* \ingroup MessageBufferManagement
*/
#define xMessageBufferSend( xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait ) \
xStreamBufferSend( ( StreamBufferHandle_t ) xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait )
/**
* message_buffer.h
*
* @code{c}
* size_t xMessageBufferSendFromISR( MessageBufferHandle_t xMessageBuffer,
* const void *pvTxData,
* size_t xDataLengthBytes,
* BaseType_t *pxHigherPriorityTaskWoken );
* @endcode
*
* Interrupt safe version of the API function that sends a discrete message to
* the message buffer. The message can be any length that fits within the
* buffer's free space, and is copied into the buffer.
*
* ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
* implementation (so also the message buffer implementation, as message buffers
* are built on top of stream buffers) assumes there is only one task or
* interrupt that will write to the buffer (the writer), and only one task or
* interrupt that will read from the buffer (the reader). It is safe for the
* writer and reader to be different tasks or interrupts, but, unlike other
* FreeRTOS objects, it is not safe to have multiple different writers or
* multiple different readers. If there are to be multiple different writers
* then the application writer must place each call to a writing API function
* (such as xMessageBufferSend()) inside a critical section and set the send
* block time to 0. Likewise, if there are to be multiple different readers
* then the application writer must place each call to a reading API function
* (such as xMessageBufferRead()) inside a critical section and set the receive
* block time to 0.
*
* Use xMessageBufferSend() to write to a message buffer from a task. Use
* xMessageBufferSendFromISR() to write to a message buffer from an interrupt
* service routine (ISR).
*
* @param xMessageBuffer The handle of the message buffer to which a message is
* being sent.
*
* @param pvTxData A pointer to the message that is to be copied into the
* message buffer.
*
* @param xDataLengthBytes The length of the message. That is, the number of
* bytes to copy from pvTxData into the message buffer. When a message is
* written to the message buffer an additional sizeof( size_t ) bytes are also
* written to store the message's length. sizeof( size_t ) is typically 4 bytes
* on a 32-bit architecture, so on most 32-bit architecture setting
* xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
* bytes (20 bytes of message data and 4 bytes to hold the message length).
*
* @param pxHigherPriorityTaskWoken It is possible that a message buffer will
* have a task blocked on it waiting for data. Calling
* xMessageBufferSendFromISR() can make data available, and so cause a task that
* was waiting for data to leave the Blocked state. If calling
* xMessageBufferSendFromISR() causes a task to leave the Blocked state, and the
* unblocked task has a priority higher than the currently executing task (the
* task that was interrupted), then, internally, xMessageBufferSendFromISR()
* will set *pxHigherPriorityTaskWoken to pdTRUE. If
* xMessageBufferSendFromISR() sets this value to pdTRUE, then normally a
* context switch should be performed before the interrupt is exited. This will
* ensure that the interrupt returns directly to the highest priority Ready
* state task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it
* is passed into the function. See the code example below for an example.
*
* @return The number of bytes actually written to the message buffer. If the
* message buffer didn't have enough free space for the message to be stored
* then 0 is returned, otherwise xDataLengthBytes is returned.
*
* Example use:
* @code{c}
* // A message buffer that has already been created.
* MessageBufferHandle_t xMessageBuffer;
*
* void vAnInterruptServiceRoutine( void )
* {
* size_t xBytesSent;
* char *pcStringToSend = "String to send";
* BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
*
* // Attempt to send the string to the message buffer.
* xBytesSent = xMessageBufferSendFromISR( xMessageBuffer,
* ( void * ) pcStringToSend,
* strlen( pcStringToSend ),
* &xHigherPriorityTaskWoken );
*
* if( xBytesSent != strlen( pcStringToSend ) )
* {
* // The string could not be added to the message buffer because there was
* // not enough free space in the buffer.
* }
*
* // If xHigherPriorityTaskWoken was set to pdTRUE inside
* // xMessageBufferSendFromISR() then a task that has a priority above the
* // priority of the currently executing task was unblocked and a context
* // switch should be performed to ensure the ISR returns to the unblocked
* // task. In most FreeRTOS ports this is done by simply passing
* // xHigherPriorityTaskWoken into portYIELD_FROM_ISR(), which will test the
* // variables value, and perform the context switch if necessary. Check the
* // documentation for the port in use for port specific instructions.
* portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
* }
* @endcode
* \defgroup xMessageBufferSendFromISR xMessageBufferSendFromISR
* \ingroup MessageBufferManagement
*/
#define xMessageBufferSendFromISR( xMessageBuffer, pvTxData, xDataLengthBytes, pxHigherPriorityTaskWoken ) \
xStreamBufferSendFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pvTxData, xDataLengthBytes, pxHigherPriorityTaskWoken )
/**
* message_buffer.h
*
* @code{c}
* size_t xMessageBufferReceive( MessageBufferHandle_t xMessageBuffer,
* void *pvRxData,
* size_t xBufferLengthBytes,
* TickType_t xTicksToWait );
* @endcode
*
* Receives a discrete message from a message buffer. Messages can be of
* variable length and are copied out of the buffer.
*
* ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
* implementation (so also the message buffer implementation, as message buffers
* are built on top of stream buffers) assumes there is only one task or
* interrupt that will write to the buffer (the writer), and only one task or
* interrupt that will read from the buffer (the reader). It is safe for the
* writer and reader to be different tasks or interrupts, but, unlike other
* FreeRTOS objects, it is not safe to have multiple different writers or
* multiple different readers. If there are to be multiple different writers
* then the application writer must place each call to a writing API function
* (such as xMessageBufferSend()) inside a critical section and set the send
* block time to 0. Likewise, if there are to be multiple different readers
* then the application writer must place each call to a reading API function
* (such as xMessageBufferRead()) inside a critical section and set the receive
* block time to 0.
*
* Use xMessageBufferReceive() to read from a message buffer from a task. Use
* xMessageBufferReceiveFromISR() to read from a message buffer from an
* interrupt service routine (ISR).
*
* @param xMessageBuffer The handle of the message buffer from which a message
* is being received.
*
* @param pvRxData A pointer to the buffer into which the received message is
* to be copied.
*
* @param xBufferLengthBytes The length of the buffer pointed to by the pvRxData
* parameter. This sets the maximum length of the message that can be received.
* If xBufferLengthBytes is too small to hold the next message then the message
* will be left in the message buffer and 0 will be returned.
*
* @param xTicksToWait The maximum amount of time the task should remain in the
* Blocked state to wait for a message, should the message buffer be empty.
* xMessageBufferReceive() will return immediately if xTicksToWait is zero and
* the message buffer is empty. The block time is specified in tick periods, so
* the absolute time it represents is dependent on the tick frequency. The
* macro pdMS_TO_TICKS() can be used to convert a time specified in milliseconds
* into a time specified in ticks. Setting xTicksToWait to portMAX_DELAY will
* cause the task to wait indefinitely (without timing out), provided
* INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. Tasks do not use any
* CPU time when they are in the Blocked state.
*
* @return The length, in bytes, of the message read from the message buffer, if
* any. If xMessageBufferReceive() times out before a message became available
* then zero is returned. If the length of the message is greater than
* xBufferLengthBytes then the message will be left in the message buffer and
* zero is returned.
*
* Example use:
* @code{c}
* void vAFunction( MessageBuffer_t xMessageBuffer )
* {
* uint8_t ucRxData[ 20 ];
* size_t xReceivedBytes;
* const TickType_t xBlockTime = pdMS_TO_TICKS( 20 );
*
* // Receive the next message from the message buffer. Wait in the Blocked
* // state (so not using any CPU processing time) for a maximum of 100ms for
* // a message to become available.
* xReceivedBytes = xMessageBufferReceive( xMessageBuffer,
* ( void * ) ucRxData,
* sizeof( ucRxData ),
* xBlockTime );
*
* if( xReceivedBytes > 0 )
* {
* // A ucRxData contains a message that is xReceivedBytes long. Process
* // the message here....
* }
* }
* @endcode
* \defgroup xMessageBufferReceive xMessageBufferReceive
* \ingroup MessageBufferManagement
*/
#define xMessageBufferReceive( xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait ) \
xStreamBufferReceive( ( StreamBufferHandle_t ) xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait )
/**
* message_buffer.h
*
* @code{c}
* size_t xMessageBufferReceiveFromISR( MessageBufferHandle_t xMessageBuffer,
* void *pvRxData,
* size_t xBufferLengthBytes,
* BaseType_t *pxHigherPriorityTaskWoken );
* @endcode
*
* An interrupt safe version of the API function that receives a discrete
* message from a message buffer. Messages can be of variable length and are
* copied out of the buffer.
*
* ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
* implementation (so also the message buffer implementation, as message buffers
* are built on top of stream buffers) assumes there is only one task or
* interrupt that will write to the buffer (the writer), and only one task or
* interrupt that will read from the buffer (the reader). It is safe for the
* writer and reader to be different tasks or interrupts, but, unlike other
* FreeRTOS objects, it is not safe to have multiple different writers or
* multiple different readers. If there are to be multiple different writers
* then the application writer must place each call to a writing API function
* (such as xMessageBufferSend()) inside a critical section and set the send
* block time to 0. Likewise, if there are to be multiple different readers
* then the application writer must place each call to a reading API function
* (such as xMessageBufferRead()) inside a critical section and set the receive
* block time to 0.
*
* Use xMessageBufferReceive() to read from a message buffer from a task. Use
* xMessageBufferReceiveFromISR() to read from a message buffer from an
* interrupt service routine (ISR).
*
* @param xMessageBuffer The handle of the message buffer from which a message
* is being received.
*
* @param pvRxData A pointer to the buffer into which the received message is
* to be copied.
*
* @param xBufferLengthBytes The length of the buffer pointed to by the pvRxData
* parameter. This sets the maximum length of the message that can be received.
* If xBufferLengthBytes is too small to hold the next message then the message
* will be left in the message buffer and 0 will be returned.
*
* @param pxHigherPriorityTaskWoken It is possible that a message buffer will
* have a task blocked on it waiting for space to become available. Calling
* xMessageBufferReceiveFromISR() can make space available, and so cause a task
* that is waiting for space to leave the Blocked state. If calling
* xMessageBufferReceiveFromISR() causes a task to leave the Blocked state, and
* the unblocked task has a priority higher than the currently executing task
* (the task that was interrupted), then, internally,
* xMessageBufferReceiveFromISR() will set *pxHigherPriorityTaskWoken to pdTRUE.
* If xMessageBufferReceiveFromISR() sets this value to pdTRUE, then normally a
* context switch should be performed before the interrupt is exited. That will
* ensure the interrupt returns directly to the highest priority Ready state
* task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it is
* passed into the function. See the code example below for an example.
*
* @return The length, in bytes, of the message read from the message buffer, if
* any.
*
* Example use:
* @code{c}
* // A message buffer that has already been created.
* MessageBuffer_t xMessageBuffer;
*
* void vAnInterruptServiceRoutine( void )
* {
* uint8_t ucRxData[ 20 ];
* size_t xReceivedBytes;
* BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
*
* // Receive the next message from the message buffer.
* xReceivedBytes = xMessageBufferReceiveFromISR( xMessageBuffer,
* ( void * ) ucRxData,
* sizeof( ucRxData ),
* &xHigherPriorityTaskWoken );
*
* if( xReceivedBytes > 0 )
* {
* // A ucRxData contains a message that is xReceivedBytes long. Process
* // the message here....
* }
*
* // If xHigherPriorityTaskWoken was set to pdTRUE inside
* // xMessageBufferReceiveFromISR() then a task that has a priority above the
* // priority of the currently executing task was unblocked and a context
* // switch should be performed to ensure the ISR returns to the unblocked
* // task. In most FreeRTOS ports this is done by simply passing
* // xHigherPriorityTaskWoken into portYIELD_FROM_ISR(), which will test the
* // variables value, and perform the context switch if necessary. Check the
* // documentation for the port in use for port specific instructions.
* portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
* }
* @endcode
* \defgroup xMessageBufferReceiveFromISR xMessageBufferReceiveFromISR
* \ingroup MessageBufferManagement
*/
#define xMessageBufferReceiveFromISR( xMessageBuffer, pvRxData, xBufferLengthBytes, pxHigherPriorityTaskWoken ) \
xStreamBufferReceiveFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pvRxData, xBufferLengthBytes, pxHigherPriorityTaskWoken )
/**
* message_buffer.h
*
* @code{c}
* void vMessageBufferDelete( MessageBufferHandle_t xMessageBuffer );
* @endcode
*
* Deletes a message buffer that was previously created using a call to
* xMessageBufferCreate() or xMessageBufferCreateStatic(). If the message
* buffer was created using dynamic memory (that is, by xMessageBufferCreate()),
* then the allocated memory is freed.
*
* A message buffer handle must not be used after the message buffer has been
* deleted.
*
* @param xMessageBuffer The handle of the message buffer to be deleted.
*
*/
#define vMessageBufferDelete( xMessageBuffer ) \
vStreamBufferDelete( ( StreamBufferHandle_t ) xMessageBuffer )
/**
* message_buffer.h
* @code{c}
* BaseType_t xMessageBufferIsFull( MessageBufferHandle_t xMessageBuffer );
* @endcode
*
* Tests to see if a message buffer is full. A message buffer is full if it
* cannot accept any more messages, of any size, until space is made available
* by a message being removed from the message buffer.
*
* @param xMessageBuffer The handle of the message buffer being queried.
*
* @return If the message buffer referenced by xMessageBuffer is full then
* pdTRUE is returned. Otherwise pdFALSE is returned.
*/
#define xMessageBufferIsFull( xMessageBuffer ) \
xStreamBufferIsFull( ( StreamBufferHandle_t ) xMessageBuffer )
/**
* message_buffer.h
* @code{c}
* BaseType_t xMessageBufferIsEmpty( MessageBufferHandle_t xMessageBuffer );
* @endcode
*
* Tests to see if a message buffer is empty (does not contain any messages).
*
* @param xMessageBuffer The handle of the message buffer being queried.
*
* @return If the message buffer referenced by xMessageBuffer is empty then
* pdTRUE is returned. Otherwise pdFALSE is returned.
*
*/
#define xMessageBufferIsEmpty( xMessageBuffer ) \
xStreamBufferIsEmpty( ( StreamBufferHandle_t ) xMessageBuffer )
/**
* message_buffer.h
* @code{c}
* BaseType_t xMessageBufferReset( MessageBufferHandle_t xMessageBuffer );
* @endcode
*
* Resets a message buffer to its initial empty state, discarding any message it
* contained.
*
* A message buffer can only be reset if there are no tasks blocked on it.
*
* @param xMessageBuffer The handle of the message buffer being reset.
*
* @return If the message buffer was reset then pdPASS is returned. If the
* message buffer could not be reset because either there was a task blocked on
* the message queue to wait for space to become available, or to wait for a
* a message to be available, then pdFAIL is returned.
*
* \defgroup xMessageBufferReset xMessageBufferReset
* \ingroup MessageBufferManagement
*/
#define xMessageBufferReset( xMessageBuffer ) \
xStreamBufferReset( ( StreamBufferHandle_t ) xMessageBuffer )
/**
* message_buffer.h
* @code{c}
* size_t xMessageBufferSpaceAvailable( MessageBufferHandle_t xMessageBuffer );
* @endcode
* Returns the number of bytes of free space in the message buffer.
*
* @param xMessageBuffer The handle of the message buffer being queried.
*
* @return The number of bytes that can be written to the message buffer before
* the message buffer would be full. When a message is written to the message
* buffer an additional sizeof( size_t ) bytes are also written to store the
* message's length. sizeof( size_t ) is typically 4 bytes on a 32-bit
* architecture, so if xMessageBufferSpacesAvailable() returns 10, then the size
* of the largest message that can be written to the message buffer is 6 bytes.
*
* \defgroup xMessageBufferSpaceAvailable xMessageBufferSpaceAvailable
* \ingroup MessageBufferManagement
*/
#define xMessageBufferSpaceAvailable( xMessageBuffer ) \
xStreamBufferSpacesAvailable( ( StreamBufferHandle_t ) xMessageBuffer )
#define xMessageBufferSpacesAvailable( xMessageBuffer ) \
xStreamBufferSpacesAvailable( ( StreamBufferHandle_t ) xMessageBuffer ) /* Corrects typo in original macro name. */
/**
* message_buffer.h
* @code{c}
* size_t xMessageBufferNextLengthBytes( MessageBufferHandle_t xMessageBuffer );
* @endcode
* Returns the length (in bytes) of the next message in a message buffer.
* Useful if xMessageBufferReceive() returned 0 because the size of the buffer
* passed into xMessageBufferReceive() was too small to hold the next message.
*
* @param xMessageBuffer The handle of the message buffer being queried.
*
* @return The length (in bytes) of the next message in the message buffer, or 0
* if the message buffer is empty.
*
* \defgroup xMessageBufferNextLengthBytes xMessageBufferNextLengthBytes
* \ingroup MessageBufferManagement
*/
#define xMessageBufferNextLengthBytes( xMessageBuffer ) \
xStreamBufferNextMessageLengthBytes( ( StreamBufferHandle_t ) xMessageBuffer ) PRIVILEGED_FUNCTION;
/**
* message_buffer.h
*
* @code{c}
* BaseType_t xMessageBufferSendCompletedFromISR( MessageBufferHandle_t xMessageBuffer, BaseType_t *pxHigherPriorityTaskWoken );
* @endcode
*
* For advanced users only.
*
* The sbSEND_COMPLETED() macro is called from within the FreeRTOS APIs when
* data is sent to a message buffer or stream buffer. If there was a task that
* was blocked on the message or stream buffer waiting for data to arrive then
* the sbSEND_COMPLETED() macro sends a notification to the task to remove it
* from the Blocked state. xMessageBufferSendCompletedFromISR() does the same
* thing. It is provided to enable application writers to implement their own
* version of sbSEND_COMPLETED(), and MUST NOT BE USED AT ANY OTHER TIME.
*
* See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
* additional information.
*
* @param xMessageBuffer The handle of the stream buffer to which data was
* written.
*
* @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
* initialised to pdFALSE before it is passed into
* xMessageBufferSendCompletedFromISR(). If calling
* xMessageBufferSendCompletedFromISR() removes a task from the Blocked state,
* and the task has a priority above the priority of the currently running task,
* then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
* context switch should be performed before exiting the ISR.
*
* @return If a task was removed from the Blocked state then pdTRUE is returned.
* Otherwise pdFALSE is returned.
*
* \defgroup xMessageBufferSendCompletedFromISR xMessageBufferSendCompletedFromISR
* \ingroup StreamBufferManagement
*/
#define xMessageBufferSendCompletedFromISR( xMessageBuffer, pxHigherPriorityTaskWoken ) \
xStreamBufferSendCompletedFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pxHigherPriorityTaskWoken )
/**
* message_buffer.h
*
* @code{c}
* BaseType_t xMessageBufferReceiveCompletedFromISR( MessageBufferHandle_t xMessageBuffer, BaseType_t *pxHigherPriorityTaskWoken );
* @endcode
*
* For advanced users only.
*
* The sbRECEIVE_COMPLETED() macro is called from within the FreeRTOS APIs when
* data is read out of a message buffer or stream buffer. If there was a task
* that was blocked on the message or stream buffer waiting for data to arrive
* then the sbRECEIVE_COMPLETED() macro sends a notification to the task to
* remove it from the Blocked state. xMessageBufferReceiveCompletedFromISR()
* does the same thing. It is provided to enable application writers to
* implement their own version of sbRECEIVE_COMPLETED(), and MUST NOT BE USED AT
* ANY OTHER TIME.
*
* See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
* additional information.
*
* @param xMessageBuffer The handle of the stream buffer from which data was
* read.
*
* @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
* initialised to pdFALSE before it is passed into
* xMessageBufferReceiveCompletedFromISR(). If calling
* xMessageBufferReceiveCompletedFromISR() removes a task from the Blocked state,
* and the task has a priority above the priority of the currently running task,
* then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
* context switch should be performed before exiting the ISR.
*
* @return If a task was removed from the Blocked state then pdTRUE is returned.
* Otherwise pdFALSE is returned.
*
* \defgroup xMessageBufferReceiveCompletedFromISR xMessageBufferReceiveCompletedFromISR
* \ingroup StreamBufferManagement
*/
#define xMessageBufferReceiveCompletedFromISR( xMessageBuffer, pxHigherPriorityTaskWoken ) \
xStreamBufferReceiveCompletedFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pxHigherPriorityTaskWoken )
/* *INDENT-OFF* */
#if defined( __cplusplus )
} /* extern "C" */
#endif
/* *INDENT-ON* */
#endif /* !defined( FREERTOS_MESSAGE_BUFFER_H ) */