/****************************************************************** ***** ***** ***** Ver.: 1.0 ***** ***** Date: 07/05/2001 ***** ***** Auth: Andreas Dannenberg ***** ***** HTWK Leipzig ***** ***** university of applied sciences ***** ***** Germany ***** ***** Func: ethernet packet-driver for use with LAN- ***** ***** controller CS8900 from Crystal/Cirrus Logic ***** ***** ***** ***** Keil: Module modified for use with Philips ***** ***** LPC2378 EMAC Ethernet controller ***** ***** ***** ******************************************************************/ /* Adapted from file originally written by Andreas Dannenberg. Supplied with permission. */ #include "FreeRTOS.h" #include "semphr.h" #include "task.h" #include "emac.h" #include "LPC17xx_defs.h" #define configPINSEL2_VALUE 0x50150105 /* The semaphore used to wake the uIP task when data arives. */ xSemaphoreHandle xEMACSemaphore = NULL; static unsigned short *rptr; static unsigned short *tptr; static unsigned short SwapBytes( unsigned short Data ) { return( Data >> 8 ) | ( Data << 8 ); } // Keil: function added to write PHY int write_PHY( int PhyReg, int Value ) { unsigned int tout; const unsigned int uiMaxTime = 10; MAC_MADR = DP83848C_DEF_ADR | PhyReg; MAC_MWTD = Value; /* Wait utill operation completed */ tout = 0; for( tout = 0; tout < uiMaxTime; tout++ ) { if( (MAC_MIND & MIND_BUSY) == 0 ) { break; } vTaskDelay( 2 ); } if( tout < uiMaxTime ) { return pdPASS; } else { return pdFAIL; } } // Keil: function added to read PHY unsigned short read_PHY( unsigned char PhyReg, portBASE_TYPE *pxStatus ) { unsigned int tout; const unsigned int uiMaxTime = 10; MAC_MADR = DP83848C_DEF_ADR | PhyReg; MAC_MCMD = MCMD_READ; /* Wait until operation completed */ tout = 0; for( tout = 0; tout < uiMaxTime; tout++ ) { if( (MAC_MIND & MIND_BUSY) == 0 ) { break; } vTaskDelay( 2 ); } MAC_MCMD = 0; if( tout >= uiMaxTime ) { *pxStatus = pdFAIL; } return( MAC_MRDD ); } // Keil: function added to initialize Rx Descriptors void rx_descr_init( void ) { unsigned int i; for( i = 0; i < NUM_RX_FRAG; i++ ) { RX_DESC_PACKET( i ) = RX_BUF( i ); RX_DESC_CTRL( i ) = RCTRL_INT | ( ETH_FRAG_SIZE - 1 ); RX_STAT_INFO( i ) = 0; RX_STAT_HASHCRC( i ) = 0; } /* Set EMAC Receive Descriptor Registers. */ MAC_RXDESCRIPTOR = RX_DESC_BASE; MAC_RXSTATUS = RX_STAT_BASE; MAC_RXDESCRIPTORNUM = NUM_RX_FRAG - 1; /* Rx Descriptors Point to 0 */ MAC_RXCONSUMEINDEX = 0; } // Keil: function added to initialize Tx Descriptors void tx_descr_init( void ) { unsigned int i; for( i = 0; i < NUM_TX_FRAG; i++ ) { TX_DESC_PACKET( i ) = TX_BUF( i ); TX_DESC_CTRL( i ) = 0; TX_STAT_INFO( i ) = 0; } /* Set EMAC Transmit Descriptor Registers. */ MAC_TXDESCRIPTOR = TX_DESC_BASE; MAC_TXSTATUS = TX_STAT_BASE; MAC_TXDESCRIPTORNUM = NUM_TX_FRAG - 1; /* Tx Descriptors Point to 0 */ MAC_TXPRODUCEINDEX = 0; } // configure port-pins for use with LAN-controller, // reset it and send the configuration-sequence portBASE_TYPE Init_EMAC( void ) { portBASE_TYPE xReturn = pdPASS; // Keil: function modified to access the EMAC // Initializes the EMAC ethernet controller volatile unsigned int regv, tout, id1, id2; /* Enable P1 Ethernet Pins. */ PINSEL2 = configPINSEL2_VALUE; PINSEL3 = ( PINSEL3 &~0x0000000F ) | 0x00000005; /* Power Up the EMAC controller. */ PCONP |= PCONP_PCENET; vTaskDelay( 2 ); /* Reset all EMAC internal modules. */ MAC_MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES; MAC_COMMAND = CR_REG_RES | CR_TX_RES | CR_RX_RES | CR_PASS_RUNT_FRM; /* A short delay after reset. */ vTaskDelay( 2 ); /* Initialize MAC control registers. */ MAC_MAC1 = MAC1_PASS_ALL; MAC_MAC2 = MAC2_CRC_EN | MAC2_PAD_EN; MAC_MAXF = ETH_MAX_FLEN; MAC_CLRT = CLRT_DEF; MAC_IPGR = IPGR_DEF; /* Enable Reduced MII interface. */ MAC_COMMAND = CR_RMII | CR_PASS_RUNT_FRM; /* Reset Reduced MII Logic. */ MAC_SUPP = SUPP_RES_RMII; vTaskDelay( 2 ); MAC_SUPP = 0; /* Put the PHY in reset mode */ write_PHY( PHY_REG_BMCR, 0x8000 ); xReturn = write_PHY( PHY_REG_BMCR, 0x8000 ); /* Wait for hardware reset to end. */ for( tout = 0; tout < 100; tout++ ) { vTaskDelay( 10 ); regv = read_PHY( PHY_REG_BMCR, &xReturn ); if( !(regv & 0x8000) ) { /* Reset complete */ break; } } /* Check if this is a DP83848C PHY. */ id1 = read_PHY( PHY_REG_IDR1, &xReturn ); id2 = read_PHY( PHY_REG_IDR2, &xReturn ); if( ((id1 << 16) | (id2 & 0xFFF0)) == DP83848C_ID ) { /* Set the Ethernet MAC Address registers */ MAC_SA0 = ( emacETHADDR0 << 8 ) | emacETHADDR1; MAC_SA1 = ( emacETHADDR2 << 8 ) | emacETHADDR3; MAC_SA2 = ( emacETHADDR4 << 8 ) | emacETHADDR5; /* Initialize Tx and Rx DMA Descriptors */ rx_descr_init(); tx_descr_init(); /* Receive Broadcast and Perfect Match Packets */ MAC_RXFILTERCTRL = RFC_UCAST_EN | RFC_BCAST_EN | RFC_PERFECT_EN; /* Create the semaphore used ot wake the uIP task. */ vSemaphoreCreateBinary( xEMACSemaphore ); /* Configure the PHY device */ /* Use autonegotiation about the link speed. */ if( write_PHY(PHY_REG_BMCR, PHY_AUTO_NEG) ) { /* Wait to complete Auto_Negotiation. */ for( tout = 0; tout < 10; tout++ ) { vTaskDelay( 100 ); regv = read_PHY( PHY_REG_BMSR, &xReturn ); if( regv & 0x0020 ) { /* Autonegotiation Complete. */ break; } } } } else { xReturn = pdFAIL; } /* Check the link status. */ if( xReturn == pdPASS ) { xReturn = pdFAIL; for( tout = 0; tout < 10; tout++ ) { vTaskDelay( 100 ); regv = read_PHY( PHY_REG_STS, &xReturn ); if( regv & 0x0001 ) { /* Link is on. */ xReturn = pdPASS; break; } } } if( xReturn == pdPASS ) { /* Configure Full/Half Duplex mode. */ if( regv & 0x0004 ) { /* Full duplex is enabled. */ MAC_MAC2 |= MAC2_FULL_DUP; MAC_COMMAND |= CR_FULL_DUP; MAC_IPGT = IPGT_FULL_DUP; } else { /* Half duplex mode. */ MAC_IPGT = IPGT_HALF_DUP; } /* Configure 100MBit/10MBit mode. */ if( regv & 0x0002 ) { /* 10MBit mode. */ MAC_SUPP = 0; } else { /* 100MBit mode. */ MAC_SUPP = SUPP_SPEED; } /* Reset all interrupts */ MAC_INTCLEAR = 0xFFFF; /* Enable receive and transmit mode of MAC Ethernet core */ MAC_COMMAND |= ( CR_RX_EN | CR_TX_EN ); MAC_MAC1 |= MAC1_REC_EN; } return xReturn; } // reads a word in little-endian byte order from RX_BUFFER unsigned short ReadFrame_EMAC( void ) { return( *rptr++ ); } // reads a word in big-endian byte order from RX_FRAME_PORT // (useful to avoid permanent byte-swapping while reading // TCP/IP-data) unsigned short ReadFrameBE_EMAC( void ) { unsigned short ReturnValue; ReturnValue = SwapBytes( *rptr++ ); return( ReturnValue ); } // copies bytes from frame port to MCU-memory // NOTES: * an odd number of byte may only be transfered // if the frame is read to the end! // * MCU-memory MUST start at word-boundary void CopyFromFrame_EMAC( void *Dest, unsigned short Size ) { unsigned short *piDest; // Keil: Pointer added to correct expression piDest = Dest; // Keil: Line added while( Size > 1 ) { *piDest++ = ReadFrame_EMAC(); Size -= 2; } if( Size ) { // check for leftover byte... *( unsigned char * ) piDest = ( char ) ReadFrame_EMAC(); // the LAN-Controller will return 0 } // for the highbyte } // does a dummy read on frame-I/O-port // NOTE: only an even number of bytes is read! void DummyReadFrame_EMAC( unsigned short Size ) // discards an EVEN number of bytes { // from RX-fifo while( Size > 1 ) { ReadFrame_EMAC(); Size -= 2; } } // Reads the length of the received ethernet frame and checks if the // destination address is a broadcast message or not // returns the frame length unsigned short StartReadFrame( void ) { unsigned short RxLen; unsigned int idx; idx = MAC_RXCONSUMEINDEX; RxLen = ( RX_STAT_INFO(idx) & RINFO_SIZE ) - 3; rptr = ( unsigned short * ) RX_DESC_PACKET( idx ); return( RxLen ); } void EndReadFrame( void ) { unsigned int idx; /* DMA free packet. */ idx = MAC_RXCONSUMEINDEX; if( ++idx == NUM_RX_FRAG ) { idx = 0; } MAC_RXCONSUMEINDEX = idx; } unsigned int CheckFrameReceived( void ) { // Packet received ? if( MAC_RXPRODUCEINDEX != MAC_RXCONSUMEINDEX ) { // more packets received ? return( 1 ); } else { return( 0 ); } } unsigned int uiGetEMACRxData( unsigned char *ucBuffer ) { unsigned int uiLen = 0; if( MAC_RXPRODUCEINDEX != MAC_RXCONSUMEINDEX ) { uiLen = StartReadFrame(); CopyFromFrame_EMAC( ucBuffer, uiLen ); EndReadFrame(); } return uiLen; } // requests space in EMAC memory for storing an outgoing frame void RequestSend( void ) { unsigned int idx; idx = MAC_TXPRODUCEINDEX; tptr = ( unsigned short * ) TX_DESC_PACKET( idx ); } // check if ethernet controller is ready to accept the // frame we want to send unsigned int Rdy4Tx( void ) { return( 1 ); // the ethernet controller transmits much faster } // than the CPU can load its buffers // writes a word in little-endian byte order to TX_BUFFER void WriteFrame_EMAC( unsigned short Data ) { *tptr++ = Data; } // copies bytes from MCU-memory to frame port // NOTES: * an odd number of byte may only be transfered // if the frame is written to the end! // * MCU-memory MUST start at word-boundary void CopyToFrame_EMAC( void *Source, unsigned int Size ) { unsigned short *piSource; piSource = Source; Size = ( Size + 1 ) & 0xFFFE; // round Size up to next even number while( Size > 0 ) { WriteFrame_EMAC( *piSource++ ); Size -= 2; } } void DoSend_EMAC( unsigned short FrameSize ) { unsigned int idx; idx = MAC_TXPRODUCEINDEX; TX_DESC_CTRL( idx ) = FrameSize | TCTRL_LAST; if( ++idx == NUM_TX_FRAG ) { idx = 0; } MAC_TXPRODUCEINDEX = idx; } void vEMAC_ISR( void ) { portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; /* Clear the interrupt. */ MAC_INTCLEAR = 0xffff; /* Ensure the uIP task is not blocked as data has arrived. */ xSemaphoreGiveFromISR( xEMACSemaphore, &xHigherPriorityTaskWoken ); portEND_SWITCHING_ISR( xHigherPriorityTaskWoken ); }