/* FreeRTOS.org V5.1.1 - Copyright (C) 2003-2008 Richard Barry. This file is part of the FreeRTOS.org distribution. FreeRTOS.org is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FreeRTOS.org is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FreeRTOS.org; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA A special exception to the GPL can be applied should you wish to distribute a combined work that includes FreeRTOS.org, without being obliged to provide the source code for any proprietary components. See the licensing section of http://www.FreeRTOS.org for full details of how and when the exception can be applied. *************************************************************************** *************************************************************************** * * * SAVE TIME AND MONEY! We can port FreeRTOS.org to your own hardware, * * and even write all or part of your application on your behalf. * * See http://www.OpenRTOS.com for details of the services we provide to * * expedite your project. * * * *************************************************************************** *************************************************************************** Please ensure to read the configuration and relevant port sections of the online documentation. http://www.FreeRTOS.org - Documentation, latest information, license and contact details. http://www.SafeRTOS.com - A version that is certified for use in safety critical systems. http://www.OpenRTOS.com - Commercial support, development, porting, licensing and training services. */ #ifndef INC_FREERTOS_H #error "#include FreeRTOS.h" must appear in source files before "#include semphr.h" #endif #ifndef SEMAPHORE_H #define SEMAPHORE_H #include "queue.h" typedef xQueueHandle xSemaphoreHandle; #define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( unsigned portCHAR ) 1 ) #define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( unsigned portCHAR ) 0 ) #define semGIVE_BLOCK_TIME ( ( portTickType ) 0 ) /** * semphr. h *
vSemaphoreCreateBinary( xSemaphoreHandle xSemaphore )
* * Macro that implements a semaphore by using the existing queue mechanism. * The queue length is 1 as this is a binary semaphore. The data size is 0 * as we don't want to actually store any data - we just want to know if the * queue is empty or full. * * This type of semaphore can be used for pure synchronisation between tasks or * between an interrupt and a task. The semaphore need not be given back once * obtained, so one task/interrupt can continuously 'give' the semaphore while * another continuously 'takes' the semaphore. For this reason this type of * semaphore does not use a priority inheritance mechanism. For an alternative * that does use priority inheritance see xSemaphoreCreateMutex(). * * @param xSemaphore Handle to the created semaphore. Should be of type xSemaphoreHandle. * * Example usage:
 xSemaphoreHandle xSemaphore;

 void vATask( void * pvParameters )
 {
    // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
    // This is a macro so pass the variable in directly.
    vSemaphoreCreateBinary( xSemaphore );

    if( xSemaphore != NULL )
    {
        // The semaphore was created successfully.
        // The semaphore can now be used.  
    }
 }
 
* \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary * \ingroup Semaphores */ #define vSemaphoreCreateBinary( xSemaphore ) { \ xSemaphore = xQueueCreate( ( unsigned portBASE_TYPE ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH ); \ if( xSemaphore != NULL ) \ { \ xSemaphoreGive( xSemaphore ); \ } \ } /** * semphr. h * xSemaphoreTake( * xSemaphoreHandle xSemaphore, * portTickType xBlockTime * ) * * Macro to obtain a semaphore. The semaphore must have previously been * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or * xSemaphoreCreateCounting(). * * @param xSemaphore A handle to the semaphore being taken - obtained when * the semaphore was created. * * @param xBlockTime The time in ticks to wait for the semaphore to become * available. The macro portTICK_RATE_MS can be used to convert this to a * real time. A block time of zero can be used to poll the semaphore. A block * time of portMAX_DELAY can be used to block indefinitely (provided * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h). * * @return pdTRUE if the semaphore was obtained. pdFALSE * if xBlockTime expired without the semaphore becoming available. * * Example usage:
 xSemaphoreHandle xSemaphore = NULL;

 // A task that creates a semaphore.
 void vATask( void * pvParameters )
 {
    // Create the semaphore to guard a shared resource.
    vSemaphoreCreateBinary( xSemaphore );
 }

 // A task that uses the semaphore.
 void vAnotherTask( void * pvParameters )
 {
    // ... Do other things.

    if( xSemaphore != NULL )
    {
        // See if we can obtain the semaphore.  If the semaphore is not available
        // wait 10 ticks to see if it becomes free.	
        if( xSemaphoreTake( xSemaphore, ( portTickType ) 10 ) == pdTRUE )
        {
            // We were able to obtain the semaphore and can now access the
            // shared resource.

            // ...

            // We have finished accessing the shared resource.  Release the 
            // semaphore.
            xSemaphoreGive( xSemaphore );
        }
        else
        {
            // We could not obtain the semaphore and can therefore not access
            // the shared resource safely.
        }
    }
 }
 
* \defgroup xSemaphoreTake xSemaphoreTake * \ingroup Semaphores */ #define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( xQueueHandle ) xSemaphore, NULL, xBlockTime, pdFALSE ) /** * semphr. h * xSemaphoreTakeRecursive( * xSemaphoreHandle xMutex, * portTickType xBlockTime * ) * * Macro to recursively obtain, or 'take', a mutex type semaphore. * The mutex must have previously been created using a call to * xSemaphoreCreateRecursiveMutex(); * * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this * macro to be available. * * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). * * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex * doesn't become available again until the owner has called * xSemaphoreGiveRecursive() for each successful 'take' request. For example, * if a task successfully 'takes' the same mutex 5 times then the mutex will * not be available to any other task until it has also 'given' the mutex back * exactly five times. * * @param xMutex A handle to the mutex being obtained. This is the * handle returned by xSemaphoreCreateRecursiveMutex(); * * @param xBlockTime The time in ticks to wait for the semaphore to become * available. The macro portTICK_RATE_MS can be used to convert this to a * real time. A block time of zero can be used to poll the semaphore. If * the task already owns the semaphore then xSemaphoreTakeRecursive() will * return immediately no matter what the value of xBlockTime. * * @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime * expired without the semaphore becoming available. * * Example usage:
 xSemaphoreHandle xMutex = NULL;

 // A task that creates a mutex.
 void vATask( void * pvParameters )
 {
    // Create the mutex to guard a shared resource.
    xMutex = xSemaphoreCreateRecursiveMutex();
 }

 // A task that uses the mutex.
 void vAnotherTask( void * pvParameters )
 {
    // ... Do other things.

    if( xMutex != NULL )
    {
        // See if we can obtain the mutex.  If the mutex is not available
        // wait 10 ticks to see if it becomes free.	
        if( xSemaphoreTakeRecursive( xSemaphore, ( portTickType ) 10 ) == pdTRUE )
        {
            // We were able to obtain the mutex and can now access the
            // shared resource.

            // ...
            // For some reason due to the nature of the code further calls to 
			// xSemaphoreTakeRecursive() are made on the same mutex.  In real
			// code these would not be just sequential calls as this would make
			// no sense.  Instead the calls are likely to be buried inside
			// a more complex call structure.
            xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );
            xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );

            // The mutex has now been 'taken' three times, so will not be 
			// available to another task until it has also been given back
			// three times.  Again it is unlikely that real code would have
			// these calls sequentially, but instead buried in a more complex
			// call structure.  This is just for illustrative purposes.
            xSemaphoreGiveRecursive( xMutex );
			xSemaphoreGiveRecursive( xMutex );
			xSemaphoreGiveRecursive( xMutex );

			// Now the mutex can be taken by other tasks.
        }
        else
        {
            // We could not obtain the mutex and can therefore not access
            // the shared resource safely.
        }
    }
 }
 
* \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive * \ingroup Semaphores */ #define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( xMutex, xBlockTime ) /* * xSemaphoreAltTake() is an alternative version of xSemaphoreTake(). * * The source code that implements the alternative (Alt) API is much * simpler because it executes everything from within a critical section. * This is the approach taken by many other RTOSes, but FreeRTOS.org has the * preferred fully featured API too. The fully featured API has more * complex code that takes longer to execute, but makes much less use of * critical sections. Therefore the alternative API sacrifices interrupt * responsiveness to gain execution speed, whereas the fully featured API * sacrifices execution speed to ensure better interrupt responsiveness. */ #define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( xQueueHandle ) xSemaphore, NULL, xBlockTime, pdFALSE ) /** * semphr. h *
xSemaphoreGive( xSemaphoreHandle xSemaphore )
* * Macro to release a semaphore. The semaphore must have previously been * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake(). * * This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for * an alternative which can be used from an ISR. * * This macro must also not be used on semaphores created using * xSemaphoreCreateRecursiveMutex(). * * @param xSemaphore A handle to the semaphore being released. This is the * handle returned when the semaphore was created. * * @return pdTRUE if the semaphore was released. pdFALSE if an error occurred. * Semaphores are implemented using queues. An error can occur if there is * no space on the queue to post a message - indicating that the * semaphore was not first obtained correctly. * * Example usage:
 xSemaphoreHandle xSemaphore = NULL;

 void vATask( void * pvParameters )
 {
    // Create the semaphore to guard a shared resource.
    vSemaphoreCreateBinary( xSemaphore );

    if( xSemaphore != NULL )
    {
        if( xSemaphoreGive( xSemaphore ) != pdTRUE )
        {
            // We would expect this call to fail because we cannot give
            // a semaphore without first "taking" it!
        }

        // Obtain the semaphore - don't block if the semaphore is not
        // immediately available.
        if( xSemaphoreTake( xSemaphore, ( portTickType ) 0 ) )
        {
            // We now have the semaphore and can access the shared resource.

            // ...

            // We have finished accessing the shared resource so can free the
            // semaphore.
            if( xSemaphoreGive( xSemaphore ) != pdTRUE )
            {
                // We would not expect this call to fail because we must have
                // obtained the semaphore to get here.
            }
        }
    }
 }
 
* \defgroup xSemaphoreGive xSemaphoreGive * \ingroup Semaphores */ #define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( xQueueHandle ) xSemaphore, NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK ) /** * semphr. h *
xSemaphoreGiveRecursive( xSemaphoreHandle xMutex )
* * Macro to recursively release, or 'give', a mutex type semaphore. * The mutex must have previously been created using a call to * xSemaphoreCreateRecursiveMutex(); * * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this * macro to be available. * * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). * * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex * doesn't become available again until the owner has called * xSemaphoreGiveRecursive() for each successful 'take' request. For example, * if a task successfully 'takes' the same mutex 5 times then the mutex will * not be available to any other task until it has also 'given' the mutex back * exactly five times. * * @param xMutex A handle to the mutex being released, or 'given'. This is the * handle returned by xSemaphoreCreateMutex(); * * @return pdTRUE if the semaphore was given. * * Example usage:
 xSemaphoreHandle xMutex = NULL;

 // A task that creates a mutex.
 void vATask( void * pvParameters )
 {
    // Create the mutex to guard a shared resource.
    xMutex = xSemaphoreCreateRecursiveMutex();
 }

 // A task that uses the mutex.
 void vAnotherTask( void * pvParameters )
 {
    // ... Do other things.

    if( xMutex != NULL )
    {
        // See if we can obtain the mutex.  If the mutex is not available
        // wait 10 ticks to see if it becomes free.	
        if( xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 ) == pdTRUE )
        {
            // We were able to obtain the mutex and can now access the
            // shared resource.

            // ...
            // For some reason due to the nature of the code further calls to 
			// xSemaphoreTakeRecursive() are made on the same mutex.  In real
			// code these would not be just sequential calls as this would make
			// no sense.  Instead the calls are likely to be buried inside
			// a more complex call structure.
            xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );
            xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );

            // The mutex has now been 'taken' three times, so will not be 
			// available to another task until it has also been given back
			// three times.  Again it is unlikely that real code would have
			// these calls sequentially, it would be more likely that the calls
			// to xSemaphoreGiveRecursive() would be called as a call stack
			// unwound.  This is just for demonstrative purposes.
            xSemaphoreGiveRecursive( xMutex );
			xSemaphoreGiveRecursive( xMutex );
			xSemaphoreGiveRecursive( xMutex );

			// Now the mutex can be taken by other tasks.
        }
        else
        {
            // We could not obtain the mutex and can therefore not access
            // the shared resource safely.
        }
    }
 }
 
* \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive * \ingroup Semaphores */ #define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( xMutex ) /* * xSemaphoreAltGive() is an alternative version of xSemaphoreGive(). * * The source code that implements the alternative (Alt) API is much * simpler because it executes everything from within a critical section. * This is the approach taken by many other RTOSes, but FreeRTOS.org has the * preferred fully featured API too. The fully featured API has more * complex code that takes longer to execute, but makes much less use of * critical sections. Therefore the alternative API sacrifices interrupt * responsiveness to gain execution speed, whereas the fully featured API * sacrifices execution speed to ensure better interrupt responsiveness. */ #define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( xQueueHandle ) xSemaphore, NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK ) /** * semphr. h *
 xSemaphoreGiveFromISR( 
                          xSemaphoreHandle xSemaphore, 
                          portBASE_TYPE *pxHigherPriorityTaskWoken
                      )
* * Macro to release a semaphore. The semaphore must have previously been * created with a call to vSemaphoreCreateBinary() or xSemaphoreCreateCounting(). * * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) * must not be used with this macro. * * This macro can be used from an ISR. * * @param xSemaphore A handle to the semaphore being released. This is the * handle returned when the semaphore was created. * * @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set * *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task * to unblock, and the unblocked task has a priority higher than the currently * running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then * a context switch should be requested before the interrupt is exited. * * @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL. * * Example usage:
 #define LONG_TIME 0xffff
 #define TICKS_TO_WAIT	10
 xSemaphoreHandle xSemaphore = NULL;

 // Repetitive task.
 void vATask( void * pvParameters )
 {
    for( ;; )
    {
        // We want this task to run every 10 ticks of a timer.  The semaphore 
        // was created before this task was started.

        // Block waiting for the semaphore to become available.
        if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
        {
            // It is time to execute.

            // ...

            // We have finished our task.  Return to the top of the loop where
            // we will block on the semaphore until it is time to execute 
            // again.  Note when using the semaphore for synchronisation with an
			// ISR in this manner there is no need to 'give' the semaphore back.
        }
    }
 }

 // Timer ISR
 void vTimerISR( void * pvParameters )
 {
 static unsigned portCHAR ucLocalTickCount = 0;
 static portBASE_TYPE xHigherPriorityTaskWoken;

    // A timer tick has occurred.

    // ... Do other time functions.

    // Is it time for vATask () to run?
	xHigherPriorityTaskWoken = pdFALSE;
    ucLocalTickCount++;
    if( ucLocalTickCount >= TICKS_TO_WAIT )
    {
        // Unblock the task by releasing the semaphore.
        xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );

        // Reset the count so we release the semaphore again in 10 ticks time.
        ucLocalTickCount = 0;
    }

    if( xHigherPriorityTaskWoken != pdFALSE )
    {
        // We can force a context switch here.  Context switching from an
        // ISR uses port specific syntax.  Check the demo task for your port
        // to find the syntax required.
    }
 }
 
* \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR * \ingroup Semaphores */ #define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueueHandle ) xSemaphore, NULL, pxHigherPriorityTaskWoken, queueSEND_TO_BACK ) /** * semphr. h *
xSemaphoreHandle xSemaphoreCreateMutex( void )
* * Macro that implements a mutex semaphore by using the existing queue * mechanism. * * Mutexes created using this macro can be accessed using the xSemaphoreTake() * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and * xSemaphoreGiveRecursive() macros should not be used. * * This type of semaphore uses a priority inheritance mechanism so a task * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the * semaphore it is no longer required. * * Mutex type semaphores cannot be used from within interrupt service routines. * * See vSemaphoreCreateBinary() for an alternative implementation that can be * used for pure synchronisation (where one task or interrupt always 'gives' the * semaphore and another always 'takes' the semaphore) and from within interrupt * service routines. * * @return xSemaphore Handle to the created mutex semaphore. Should be of type * xSemaphoreHandle. * * Example usage:
 xSemaphoreHandle xSemaphore;

 void vATask( void * pvParameters )
 {
    // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
    // This is a macro so pass the variable in directly.
    xSemaphore = xSemaphoreCreateMutex();

    if( xSemaphore != NULL )
    {
        // The semaphore was created successfully.
        // The semaphore can now be used.  
    }
 }
 
* \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex * \ingroup Semaphores */ #define xSemaphoreCreateMutex() xQueueCreateMutex() /** * semphr. h *
xSemaphoreHandle xSemaphoreCreateRecursiveMutex( void )
* * Macro that implements a recursive mutex by using the existing queue * mechanism. * * Mutexes created using this macro can be accessed using the * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The * xSemaphoreTake() and xSemaphoreGive() macros should not be used. * * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex * doesn't become available again until the owner has called * xSemaphoreGiveRecursive() for each successful 'take' request. For example, * if a task successfully 'takes' the same mutex 5 times then the mutex will * not be available to any other task until it has also 'given' the mutex back * exactly five times. * * This type of semaphore uses a priority inheritance mechanism so a task * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the * semaphore it is no longer required. * * Mutex type semaphores cannot be used from within interrupt service routines. * * See vSemaphoreCreateBinary() for an alternative implementation that can be * used for pure synchronisation (where one task or interrupt always 'gives' the * semaphore and another always 'takes' the semaphore) and from within interrupt * service routines. * * @return xSemaphore Handle to the created mutex semaphore. Should be of type * xSemaphoreHandle. * * Example usage:
 xSemaphoreHandle xSemaphore;

 void vATask( void * pvParameters )
 {
    // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
    // This is a macro so pass the variable in directly.
    xSemaphore = xSemaphoreCreateRecursiveMutex();

    if( xSemaphore != NULL )
    {
        // The semaphore was created successfully.
        // The semaphore can now be used.  
    }
 }
 
* \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex * \ingroup Semaphores */ #define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex() /** * semphr. h *
xSemaphoreHandle xSemaphoreCreateCounting( unsigned portBASE_TYPE uxMaxCount, unsigned portBASE_TYPE uxInitialCount )
* * Macro that creates a counting semaphore by using the existing * queue mechanism. * * Counting semaphores are typically used for two things: * * 1) Counting events. * * In this usage scenario an event handler will 'give' a semaphore each time * an event occurs (incrementing the semaphore count value), and a handler * task will 'take' a semaphore each time it processes an event * (decrementing the semaphore count value). The count value is therefore * the difference between the number of events that have occurred and the * number that have been processed. In this case it is desirable for the * initial count value to be zero. * * 2) Resource management. * * In this usage scenario the count value indicates the number of resources * available. To obtain control of a resource a task must first obtain a * semaphore - decrementing the semaphore count value. When the count value * reaches zero there are no free resources. When a task finishes with the * resource it 'gives' the semaphore back - incrementing the semaphore count * value. In this case it is desirable for the initial count value to be * equal to the maximum count value, indicating that all resources are free. * * @param uxMaxCount The maximum count value that can be reached. When the * semaphore reaches this value it can no longer be 'given'. * * @param uxInitialCount The count value assigned to the semaphore when it is * created. * * @return Handle to the created semaphore. Null if the semaphore could not be * created. * * Example usage:
 xSemaphoreHandle xSemaphore;

 void vATask( void * pvParameters )
 {
 xSemaphoreHandle xSemaphore = NULL;

    // Semaphore cannot be used before a call to xSemaphoreCreateCounting().
    // The max value to which the semaphore can count should be 10, and the
    // initial value assigned to the count should be 0.
    xSemaphore = xSemaphoreCreateCounting( 10, 0 );

    if( xSemaphore != NULL )
    {
        // The semaphore was created successfully.
        // The semaphore can now be used.  
    }
 }
 
* \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting * \ingroup Semaphores */ #define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount ) #endif /* SEMAPHORE_H */