/* FreeRTOS V8.0.0:rc1 - Copyright (C) 2014 Real Time Engineers Ltd. All rights reserved VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. *************************************************************************** * * * FreeRTOS provides completely free yet professionally developed, * * robust, strictly quality controlled, supported, and cross * * platform software that has become a de facto standard. * * * * Help yourself get started quickly and support the FreeRTOS * * project by purchasing a FreeRTOS tutorial book, reference * * manual, or both from: http://www.FreeRTOS.org/Documentation * * * * Thank you! * * * *************************************************************************** This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. >>! NOTE: The modification to the GPL is included to allow you to distribute >>! a combined work that includes FreeRTOS without being obliged to provide >>! the source code for proprietary components outside of the FreeRTOS >>! kernel. FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Full license text is available from the following link: http://www.freertos.org/a00114.html 1 tab == 4 spaces! *************************************************************************** * * * Having a problem? Start by reading the FAQ "My application does * * not run, what could be wrong?" * * * * http://www.FreeRTOS.org/FAQHelp.html * * * *************************************************************************** http://www.FreeRTOS.org - Documentation, books, training, latest versions, license and Real Time Engineers Ltd. contact details. http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, including FreeRTOS+Trace - an indispensable productivity tool, a DOS compatible FAT file system, and our tiny thread aware UDP/IP stack. http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS licenses offer ticketed support, indemnification and middleware. http://www.SafeRTOS.com - High Integrity Systems also provide a safety engineered and independently SIL3 certified version for use in safety and mission critical applications that require provable dependability. 1 tab == 4 spaces! */ #ifndef PORTMACRO_H #define PORTMACRO_H /*----------------------------------------------------------- * Port specific definitions. * * The settings in this file configure FreeRTOS correctly for the * given hardware and compiler. * * These settings should not be altered. *----------------------------------------------------------- */ /* Type definitions. */ #define portCHAR char #define portFLOAT float #define portDOUBLE double #define portLONG long #define portSHORT short #define portSTACK_TYPE uint8_t #define portBASE_TYPE char typedef portSTACK_TYPE StackType_t; typedef signed char BaseType_t; typedef unsigned char UBaseType_t; #if( configUSE_16_BIT_TICKS == 1 ) typedef uint16_t TickType_t; #define portMAX_DELAY ( TickType_t ) 0xffff #else typedef uint32_t TickType_t; #define portMAX_DELAY ( TickType_t ) 0xffffffffUL #endif /*-----------------------------------------------------------*/ /* Hardware specifics. */ #define portBYTE_ALIGNMENT 1 #define portSTACK_GROWTH ( -1 ) #define portTICK_RATE_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ ) #define portYIELD() __asm( "swi" ); #define portNOP() __asm( "nop" ); /*-----------------------------------------------------------*/ /* Critical section handling. */ #define portENABLE_INTERRUPTS() __asm( "cli" ) #define portDISABLE_INTERRUPTS() __asm( "sei" ) /* * Disable interrupts before incrementing the count of critical section nesting. * The nesting count is maintained so we know when interrupts should be * re-enabled. Once interrupts are disabled the nesting count can be accessed * directly. Each task maintains its own nesting count. */ #define portENTER_CRITICAL() \ { \ extern volatile UBaseType_t uxCriticalNesting; \ \ portDISABLE_INTERRUPTS(); \ uxCriticalNesting++; \ } /* * Interrupts are disabled so we can access the nesting count directly. If the * nesting is found to be 0 (no nesting) then we are leaving the critical * section and interrupts can be re-enabled. */ #define portEXIT_CRITICAL() \ { \ extern volatile UBaseType_t uxCriticalNesting; \ \ uxCriticalNesting--; \ if( uxCriticalNesting == 0 ) \ { \ portENABLE_INTERRUPTS(); \ } \ } /*-----------------------------------------------------------*/ /* Task utilities. */ /* * These macros are very simple as the processor automatically saves and * restores its registers as interrupts are entered and exited. In * addition to the (automatically stacked) registers we also stack the * critical nesting count. Each task maintains its own critical nesting * count as it is legitimate for a task to yield from within a critical * section. If the banked memory model is being used then the PPAGE * register is also stored as part of the tasks context. */ #ifdef BANKED_MODEL /* * Load the stack pointer for the task, then pull the critical nesting * count and PPAGE register from the stack. The remains of the * context are restored by the RTI instruction. */ #define portRESTORE_CONTEXT() \ { \ extern volatile void * pxCurrentTCB; \ extern volatile UBaseType_t uxCriticalNesting; \ \ __asm( "ldx pxCurrentTCB" ); \ __asm( "lds 0, x" ); \ __asm( "pula" ); \ __asm( "staa uxCriticalNesting" ); \ __asm( "pula" ); \ __asm( "staa 0x30" ); /* 0x30 = PPAGE */ \ } /* * By the time this macro is called the processor has already stacked the * registers. Simply stack the nesting count and PPAGE value, then save * the task stack pointer. */ #define portSAVE_CONTEXT() \ { \ extern volatile void * pxCurrentTCB; \ extern volatile UBaseType_t uxCriticalNesting; \ \ __asm( "ldaa 0x30" ); /* 0x30 = PPAGE */ \ __asm( "psha" ); \ __asm( "ldaa uxCriticalNesting" ); \ __asm( "psha" ); \ __asm( "ldx pxCurrentTCB" ); \ __asm( "sts 0, x" ); \ } #else /* * These macros are as per the BANKED versions above, but without saving * and restoring the PPAGE register. */ #define portRESTORE_CONTEXT() \ { \ extern volatile void * pxCurrentTCB; \ extern volatile UBaseType_t uxCriticalNesting; \ \ __asm( "ldx pxCurrentTCB" ); \ __asm( "lds 0, x" ); \ __asm( "pula" ); \ __asm( "staa uxCriticalNesting" ); \ } #define portSAVE_CONTEXT() \ { \ extern volatile void * pxCurrentTCB; \ extern volatile UBaseType_t uxCriticalNesting; \ \ __asm( "ldaa uxCriticalNesting" ); \ __asm( "psha" ); \ __asm( "ldx pxCurrentTCB" ); \ __asm( "sts 0, x" ); \ } #endif /* * Utility macro to call macros above in correct order in order to perform a * task switch from within a standard ISR. This macro can only be used if * the ISR does not use any local (stack) variables. If the ISR uses stack * variables portYIELD() should be used in it's place. */ #define portTASK_SWITCH_FROM_ISR() \ portSAVE_CONTEXT(); \ vTaskSwitchContext(); \ portRESTORE_CONTEXT(); /* Task function macros as described on the FreeRTOS.org WEB site. */ #define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters ) #define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters ) #endif /* PORTMACRO_H */