/*This file has been prepared for Doxygen automatic documentation generation.*/ /*! \file ********************************************************************* * * \brief Power Manager driver. * * * - Compiler: IAR EWAVR32 and GNU GCC for AVR32 * - Supported devices: All AVR32 devices. * - AppNote: * * \author Atmel Corporation: http://www.atmel.com \n * Support email: avr32@atmel.com * *****************************************************************************/ /* Copyright (c) 2007, Atmel Corporation All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of ATMEL may not be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY ATMEL ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND * SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "pm.h" void pm_enable_osc0_ext_clock(volatile avr32_pm_t *pm) { union { unsigned long oscctrl0; avr32_pm_oscctrl0_t OSCCTRL0; } oscctrl0 ; // Read oscctrl0.oscctrl0 = pm->oscctrl0; // Modify oscctrl0.OSCCTRL0.mode = AVR32_PM_OSCCTRL0_MODE_EXT_CLOCK; // Write pm->oscctrl0 = oscctrl0.oscctrl0; } void pm_enable_osc0_crystal(volatile avr32_pm_t *pm, unsigned int fosc0) { union { unsigned long oscctrl0; avr32_pm_oscctrl0_t OSCCTRL0; } oscctrl0 ; // Read oscctrl0.oscctrl0 = pm->oscctrl0; // Modify oscctrl0.OSCCTRL0.mode = (fosc0 < 8000000) ? AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G2 : AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G3; // Write pm->oscctrl0 = oscctrl0.oscctrl0; } void pm_enable_clk0(volatile avr32_pm_t *pm, unsigned int startup) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; union { unsigned long oscctrl0; avr32_pm_oscctrl0_t OSCCTRL0; } oscctrl0 ; // Read register mcctrl.mcctrl = pm->mcctrl; oscctrl0.oscctrl0 = pm->oscctrl0; // Modify mcctrl.MCCTRL.osc0en = 1; oscctrl0.OSCCTRL0.startup = startup; // Write back pm->oscctrl0 = oscctrl0.oscctrl0; pm->mcctrl = mcctrl.mcctrl; while(!pm->ISR.osc0rdy); //For osc output valid } void pm_disable_clk0(volatile avr32_pm_t *pm) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; // Read register mcctrl.mcctrl = pm->mcctrl; // Modify mcctrl.MCCTRL.osc0en = 0; // Write back pm->mcctrl = mcctrl.mcctrl; } void pm_enable_clk0_no_wait(volatile avr32_pm_t *pm, unsigned int startup) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; union { unsigned long oscctrl0; avr32_pm_oscctrl0_t OSCCTRL0; } oscctrl0 ; // Read register mcctrl.mcctrl = pm->mcctrl; oscctrl0.oscctrl0 = pm->oscctrl0; // Modify mcctrl.MCCTRL.osc0en = 1; oscctrl0.OSCCTRL0.startup=startup; // Write back pm->mcctrl = mcctrl.mcctrl; pm->oscctrl0 = oscctrl0.oscctrl0; } void pm_wait_for_clk0_ready(volatile avr32_pm_t *pm) { while(!pm->ISR.osc0rdy); } void pm_enable_osc1_ext_clock(volatile avr32_pm_t *pm) { union { unsigned long oscctrl1; avr32_pm_oscctrl1_t OSCCTRL1; } oscctrl1 ; // Read oscctrl1.oscctrl1= pm->oscctrl1; // Modify oscctrl1.OSCCTRL1.mode = AVR32_PM_OSCCTRL1_MODE_EXT_CLOCK; // Write pm->oscctrl1 = oscctrl1.oscctrl1; } void pm_enable_osc1_crystal(volatile avr32_pm_t *pm, unsigned int fosc1) { union { unsigned long oscctrl1; avr32_pm_oscctrl1_t OSCCTRL1; } oscctrl1 ; // Read oscctrl1.oscctrl1= pm->oscctrl1; // Modify oscctrl1.OSCCTRL1.mode = (fosc1 < 8000000) ? AVR32_PM_OSCCTRL1_MODE_CRYSTAL_G2 : AVR32_PM_OSCCTRL1_MODE_CRYSTAL_G3; // Write pm->oscctrl1 = oscctrl1.oscctrl1; } void pm_enable_clk1(volatile avr32_pm_t *pm, unsigned int startup) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; union { unsigned long oscctrl1; avr32_pm_oscctrl1_t OSCCTRL1; } oscctrl1 ; // Read register mcctrl.mcctrl = pm->mcctrl; oscctrl1.oscctrl1 = pm->oscctrl1; mcctrl.MCCTRL.osc1en = 1; oscctrl1.OSCCTRL1.startup=startup; // Write back pm->oscctrl1 = oscctrl1.oscctrl1; pm->mcctrl = mcctrl.mcctrl; while(!pm->ISR.osc1rdy); } void pm_disable_clk1(volatile avr32_pm_t *pm) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; // Read register mcctrl.mcctrl = pm->mcctrl; // Modify mcctrl.MCCTRL.osc1en = 0; // Write back pm->mcctrl = mcctrl.mcctrl; } void pm_enable_clk1_no_wait(volatile avr32_pm_t *pm, unsigned int startup) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; union { unsigned long oscctrl1; avr32_pm_oscctrl1_t OSCCTRL1; } oscctrl1 ; // Read register mcctrl.mcctrl = pm->mcctrl; oscctrl1.oscctrl1 = pm->oscctrl1; mcctrl.MCCTRL.osc1en = 1; oscctrl1.OSCCTRL1.startup=startup; // Write back pm->oscctrl1 = oscctrl1.oscctrl1; pm->mcctrl = mcctrl.mcctrl; } void pm_wait_for_clk1_ready(volatile avr32_pm_t *pm) { while(!pm->ISR.osc1rdy); } void pm_enable_osc32_ext_clock(volatile avr32_pm_t *pm) { union { unsigned long oscctrl32; avr32_pm_oscctrl32_t OSCCTRL32; } u_ctrl; u_ctrl.oscctrl32 = pm->oscctrl32; u_ctrl.OSCCTRL32.mode = AVR32_PM_OSCCTRL32_MODE_EXT_CLOCK; pm->oscctrl32 = u_ctrl.oscctrl32; } void pm_enable_osc32_crystal(volatile avr32_pm_t *pm) { union { unsigned long oscctrl32; avr32_pm_oscctrl32_t OSCCTRL32; } u_ctrl; u_ctrl.oscctrl32 = pm->oscctrl32; u_ctrl.OSCCTRL32.mode = AVR32_PM_OSCCTRL32_MODE_CRYSTAL; pm->oscctrl32 = u_ctrl.oscctrl32; } void pm_enable_clk32(volatile avr32_pm_t *pm, unsigned int startup) { union { unsigned long oscctrl32; avr32_pm_oscctrl32_t OSCCTRL32; } oscctrl32 ; // Read register oscctrl32.oscctrl32 = pm->oscctrl32; // Modify oscctrl32.OSCCTRL32.osc32en = 1; oscctrl32.OSCCTRL32.startup=startup; // Write back pm->oscctrl32 = oscctrl32.oscctrl32; while(!pm->ISR.osc32rdy); } void pm_disable_clk32(volatile avr32_pm_t *pm) { // To get rid of a GCC bug // This makes C code longer, but not ASM union { unsigned long oscctrl32; avr32_pm_oscctrl32_t OSCCTRL32; } oscctrl32 ; // Read register oscctrl32.oscctrl32 = pm->oscctrl32; // Modify oscctrl32.OSCCTRL32.osc32en = 0; // Write back pm->oscctrl32 = oscctrl32.oscctrl32; } void pm_enable_clk32_no_wait(volatile avr32_pm_t *pm, unsigned int startup) { union { unsigned long oscctrl32; avr32_pm_oscctrl32_t OSCCTRL32; } oscctrl32 ; // Read register oscctrl32.oscctrl32 = pm->oscctrl32; // Modify oscctrl32.OSCCTRL32.osc32en = 1; oscctrl32.OSCCTRL32.startup=startup; // Write back pm->oscctrl32 = oscctrl32.oscctrl32; } void pm_wait_for_clk32_ready(volatile avr32_pm_t *pm) { // To get rid of a GCC bug // This makes C code longer, but not ASM while(!pm->ISR.osc32rdy); } void pm_cksel(volatile avr32_pm_t *pm, unsigned int pbadiv, unsigned int pbasel, unsigned int pbbdiv, unsigned int pbbsel, unsigned int hsbdiv, unsigned int hsbsel) { // Force the compiler to generate only one 32 bits access union { avr32_pm_cksel_t selval ; unsigned long uword32; } cksel; cksel.uword32 = 0; cksel.selval.cpudiv = hsbdiv; cksel.selval.cpusel = hsbsel; cksel.selval.hsbdiv = hsbdiv; cksel.selval.hsbsel = hsbsel; cksel.selval.pbbdiv = pbbdiv; cksel.selval.pbbsel = pbbsel; cksel.selval.pbadiv = pbadiv; cksel.selval.pbasel = pbasel; pm->cksel = cksel.uword32; // Wait for ckrdy bit and then clear it while(!(pm->ISR.ckrdy)); return; } void pm_gc_setup(volatile avr32_pm_t *pm, unsigned int gc, unsigned int osc_or_pll, // Use Osc (=0) or PLL (=1) unsigned int pll_osc, // Sel Osc0/PLL0 or Osc1/PLL1 unsigned int diven, unsigned int div) { union { unsigned long gcctrl; avr32_pm_gcctrl_t GCCTRL; } u_gc; u_gc.GCCTRL.oscsel = pll_osc; u_gc.GCCTRL.pllsel = osc_or_pll; u_gc.GCCTRL.diven = diven; u_gc.GCCTRL.div = div; u_gc.GCCTRL.cen = 0; // Disable GC first pm->gcctrl[gc] = u_gc.gcctrl; } void pm_gc_enable(volatile avr32_pm_t *pm, unsigned int gc) { union { unsigned long gcctrl; avr32_pm_gcctrl_t GCCTRL; } u_gc; u_gc.gcctrl = pm->gcctrl[gc]; u_gc.GCCTRL.cen = 1; pm->gcctrl[gc] = u_gc.gcctrl; } void pm_gc_disable(volatile avr32_pm_t *pm, unsigned int gc) { union { unsigned long gcctrl; avr32_pm_gcctrl_t GCCTRL; } u_gc; u_gc.gcctrl = pm->gcctrl[gc]; u_gc.GCCTRL.cen = 0; pm->gcctrl[gc] = u_gc.gcctrl; } void pm_pll_setup(volatile avr32_pm_t *pm, unsigned int pll, unsigned int mul, unsigned int div, unsigned int osc, unsigned int lockcount) { union { unsigned long pll ; avr32_pm_pll_t PLL ; } u_pll; u_pll.pll=0; u_pll.PLL.pllmul = mul; u_pll.PLL.plldiv = div; u_pll.PLL.pllosc = osc; u_pll.PLL.pllcount = lockcount; u_pll.PLL.pllopt = 0; u_pll.PLL.plltest = 0; (pm->pll)[pll] = u_pll.pll; } void pm_pll_set_option(volatile avr32_pm_t *pm, unsigned int pll, unsigned int pll_freq, unsigned int pll_div2, unsigned int pll_wbwdisable) { union { unsigned long pll ; avr32_pm_pll_t PLL ; } u_pll; u_pll.pll = (pm->pll)[pll]; u_pll.PLL.pllopt = pll_freq | (pll_div2<<1) | (pll_wbwdisable<<2); (pm->pll)[pll] = u_pll.pll; } unsigned int pm_pll_get_option(volatile avr32_pm_t *pm, unsigned int pll) { return (pm->PLL)[pll].pllopt; } void pm_pll_enable(volatile avr32_pm_t *pm, unsigned int pll) { union { unsigned long pll ; avr32_pm_pll_t PLL ; } u_pll; u_pll.pll = (pm->pll)[pll]; u_pll.PLL.pllen = 1; (pm->pll)[pll] = u_pll.pll; } void pm_pll_disable(volatile avr32_pm_t *pm, unsigned int pll) { union { unsigned long pll ; avr32_pm_pll_t PLL ; } u_pll; u_pll.pll = (pm->pll)[pll]; u_pll.PLL.pllen = 0; (pm->pll)[pll] = u_pll.pll; } void pm_wait_for_pll0_locked(volatile avr32_pm_t *pm) { while(!pm->ISR.lock0); // Bypass the lock signal of the PLL pm->pll[0] |= AVR32_PM_PLL0_PLLBPL_MASK; } void pm_wait_for_pll1_locked(volatile avr32_pm_t *pm) { while(!pm->ISR.lock1); // Bypass the lock signal of the PLL pm->pll[1] |= AVR32_PM_PLL1_PLLBPL_MASK; } void pm_switch_to_clock(volatile avr32_pm_t *pm, unsigned long clock) { union { avr32_pm_mcctrl_t MCCTRL; unsigned long mcctrl; } mcctrl; // Read mcctrl.mcctrl = pm->mcctrl; // Modify mcctrl.MCCTRL.mcsel = clock; // Write Back pm->MCCTRL.mcsel = mcctrl.mcctrl; } void pm_switch_to_osc0(volatile avr32_pm_t *pm, unsigned int fosc0, unsigned int startup) { pm_enable_osc0_crystal(pm, fosc0); // Enable the Osc0 in crystal mode pm_enable_clk0(pm, startup); // Crystal startup time - This parameter is critical and depends on the characteristics of the crystal pm_switch_to_clock(pm, AVR32_PM_MCSEL_OSC0); // Then switch main clock to Osc0 } void pm_bod_enable_irq(volatile struct avr32_pm_t *pm) { union { unsigned long ier ; avr32_pm_ier_t IER ; } u_ier; u_ier.ier = 0; u_ier.IER.boddet = 1; pm->ier = u_ier.ier; } void pm_bod_disable_irq(volatile struct avr32_pm_t *pm) { union { unsigned long idr ; avr32_pm_idr_t IDR ; } u_idr; u_idr.idr = 0; u_idr.IDR.boddet = 1; pm->idr = u_idr.idr; } void pm_bod_clear_irq(volatile struct avr32_pm_t *pm) { union { unsigned long icr ; avr32_pm_idr_t ICR ; } u_icr; u_icr.icr = 0; u_icr.ICR.boddet = 1; pm->icr = u_icr.icr; } unsigned long pm_bod_get_irq_status(volatile struct avr32_pm_t *pm) { return pm->ISR.boddet; } unsigned long pm_bod_get_irq_enable_bit(volatile struct avr32_pm_t *pm) { return pm->IMR.boddet; } unsigned long pm_bod_get_level(volatile avr32_pm_t *pm) { union { unsigned long bod ; avr32_pm_bod_t BOD ; } u_bod; u_bod.bod = pm->bod; return (unsigned long) u_bod.BOD.level; } void pm_write_gplp(volatile avr32_pm_t *pm,unsigned long gplp, unsigned long value) { (pm->gplp)[gplp] = value; } unsigned long pm_read_gplp(volatile avr32_pm_t *pm,unsigned long gplp) { return (pm->gplp)[gplp]; }