/* * FreeRTOS Kernel V10.3.1 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * http://www.FreeRTOS.org * http://aws.amazon.com/freertos * * 1 tab == 4 spaces! */ /*----------------------------------------------------------- * Implementation of functions defined in portable.h for the ARM CM3 port. *----------------------------------------------------------*/ /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers. That should only be done when * task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #ifndef __TARGET_FPU_VFP #error This port can only be used when the project options are configured to enable hardware floating point support. #endif #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* Constants required to access and manipulate the NVIC. */ #define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) ) #define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) ) #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) ) #define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) ) #define portNVIC_SYSPRI1_REG ( * ( ( volatile uint32_t * ) 0xe000ed1c ) ) #define portNVIC_SYS_CTRL_STATE_REG ( * ( ( volatile uint32_t * ) 0xe000ed24 ) ) #define portNVIC_MEM_FAULT_ENABLE ( 1UL << 16UL ) /* Constants required to access and manipulate the MPU. */ #define portMPU_TYPE_REG ( * ( ( volatile uint32_t * ) 0xe000ed90 ) ) #define portMPU_REGION_BASE_ADDRESS_REG ( * ( ( volatile uint32_t * ) 0xe000ed9C ) ) #define portMPU_REGION_ATTRIBUTE_REG ( * ( ( volatile uint32_t * ) 0xe000edA0 ) ) #define portMPU_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed94 ) ) #define portEXPECTED_MPU_TYPE_VALUE ( 8UL << 8UL ) /* 8 regions, unified. */ #define portMPU_ENABLE ( 0x01UL ) #define portMPU_BACKGROUND_ENABLE ( 1UL << 2UL ) #define portPRIVILEGED_EXECUTION_START_ADDRESS ( 0UL ) #define portMPU_REGION_VALID ( 0x10UL ) #define portMPU_REGION_ENABLE ( 0x01UL ) #define portPERIPHERALS_START_ADDRESS 0x40000000UL #define portPERIPHERALS_END_ADDRESS 0x5FFFFFFFUL /* Constants required to access and manipulate the SysTick. */ #define portNVIC_SYSTICK_CLK ( 0x00000004UL ) #define portNVIC_SYSTICK_INT ( 0x00000002UL ) #define portNVIC_SYSTICK_ENABLE ( 0x00000001UL ) #define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL ) #define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL ) #define portNVIC_SVC_PRI ( ( ( uint32_t ) configMAX_SYSCALL_INTERRUPT_PRIORITY - 1UL ) << 24UL ) /* Constants required to manipulate the VFP. */ #define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34UL ) /* Floating point context control register. */ #define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL ) /* Constants required to set up the initial stack. */ #define portINITIAL_XPSR ( 0x01000000UL ) #define portINITIAL_EXC_RETURN ( 0xfffffffdUL ) #define portINITIAL_CONTROL_IF_UNPRIVILEGED ( 0x03 ) #define portINITIAL_CONTROL_IF_PRIVILEGED ( 0x02 ) /* Constants required to check the validity of an interrupt priority. */ #define portFIRST_USER_INTERRUPT_NUMBER ( 16 ) #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 ) #define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) ) #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 ) #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 ) #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL ) #define portPRIGROUP_SHIFT ( 8UL ) /* Offsets in the stack to the parameters when inside the SVC handler. */ #define portOFFSET_TO_PC ( 6 ) /* For strict compliance with the Cortex-M spec the task start address should * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */ #define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL ) /* Each task maintains its own interrupt status in the critical nesting * variable. Note this is not saved as part of the task context as context * switches can only occur when uxCriticalNesting is zero. */ static UBaseType_t uxCriticalNesting = 0xaaaaaaaa; /* * Setup the timer to generate the tick interrupts. */ void vSetupTimerInterrupt( void ) PRIVILEGED_FUNCTION; /* * Configure a number of standard MPU regions that are used by all tasks. */ static void prvSetupMPU( void ) PRIVILEGED_FUNCTION; /* * Start first task is a separate function so it can be tested in isolation. */ static void prvStartFirstTask( void ) PRIVILEGED_FUNCTION; /* * Return the smallest MPU region size that a given number of bytes will fit * into. The region size is returned as the value that should be programmed * into the region attribute register for that region. */ static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) PRIVILEGED_FUNCTION; /* * Standard FreeRTOS exception handlers. */ void xPortPendSVHandler( void ) PRIVILEGED_FUNCTION; void xPortSysTickHandler( void ) PRIVILEGED_FUNCTION; void vPortSVCHandler( void ) PRIVILEGED_FUNCTION; /* * Starts the scheduler by restoring the context of the first task to run. */ static void prvRestoreContextOfFirstTask( void ) PRIVILEGED_FUNCTION; /* * C portion of the SVC handler. The SVC handler is split between an asm entry * and a C wrapper for simplicity of coding and maintenance. */ void prvSVCHandler( uint32_t *pulRegisters ) __attribute__((used)) PRIVILEGED_FUNCTION; /* * Function to enable the VFP. */ static void vPortEnableVFP( void ); /* * Utility function. */ static uint32_t prvPortGetIPSR( void ); /* * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure * FreeRTOS API functions are not called from interrupts that have been assigned * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY. */ #if ( configASSERT_DEFINED == 1 ) static uint8_t ucMaxSysCallPriority = 0; static uint32_t ulMaxPRIGROUPValue = 0; static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16; #endif /* configASSERT_DEFINED */ /** * @brief Checks whether or not the processor is privileged. * * @return 1 if the processor is already privileged, 0 otherwise. */ BaseType_t xIsPrivileged( void ); /** * @brief Lowers the privilege level by setting the bit 0 of the CONTROL * register. * * Bit 0 of the CONTROL register defines the privilege level of Thread Mode. * Bit[0] = 0 --> The processor is running privileged * Bit[0] = 1 --> The processor is running unprivileged. */ void vResetPrivilege( void ); /** * @brief Calls the port specific code to raise the privilege. * * @return pdFALSE if privilege was raised, pdTRUE otherwise. */ extern BaseType_t xPortRaisePrivilege( void ); /** * @brief If xRunningPrivileged is not pdTRUE, calls the port specific * code to reset the privilege, otherwise does nothing. */ extern void vPortResetPrivilege( BaseType_t xRunningPrivileged ); /*-----------------------------------------------------------*/ /* * See header file for description. */ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) { /* Simulate the stack frame as it would be created by a context switch * interrupt. */ pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */ *pxTopOfStack = portINITIAL_XPSR; /* xPSR */ pxTopOfStack--; *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */ pxTopOfStack--; *pxTopOfStack = 0; /* LR */ pxTopOfStack -= 5; /* R12, R3, R2 and R1. */ *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */ /* A save method is being used that requires each task to maintain its * own exec return value. */ pxTopOfStack--; *pxTopOfStack = portINITIAL_EXC_RETURN; pxTopOfStack -= 9; /* R11, R10, R9, R8, R7, R6, R5 and R4. */ if( xRunPrivileged == pdTRUE ) { *pxTopOfStack = portINITIAL_CONTROL_IF_PRIVILEGED; } else { *pxTopOfStack = portINITIAL_CONTROL_IF_UNPRIVILEGED; } return pxTopOfStack; } /*-----------------------------------------------------------*/ void prvSVCHandler( uint32_t *pulParam ) { uint8_t ucSVCNumber; uint32_t ulReg, ulPC; #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) extern uint32_t __syscalls_flash_start__; extern uint32_t __syscalls_flash_end__; #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */ /* The stack contains: r0, r1, r2, r3, r12, LR, PC and xPSR. The first * argument (r0) is pulParam[ 0 ]. */ ulPC = pulParam[ portOFFSET_TO_PC ]; ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ]; switch( ucSVCNumber ) { case portSVC_START_SCHEDULER : portNVIC_SYSPRI1_REG |= portNVIC_SVC_PRI; prvRestoreContextOfFirstTask(); break; case portSVC_YIELD : portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; /* Barriers are normally not required * but do ensure the code is completely * within the specified behaviour for the * architecture. */ __asm volatile( "dsb" ); __asm volatile( "isb" ); break; #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) case portSVC_RAISE_PRIVILEGE : /* Only raise the privilege, if the * svc was raised from any of the * system calls. */ if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) && ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) ) { __asm { mrs ulReg, control /* Obtain current control value. */ bic ulReg, #1 /* Set privilege bit. */ msr control, ulReg /* Write back new control value. */ } } break; #else case portSVC_RAISE_PRIVILEGE : __asm { mrs ulReg, control /* Obtain current control value. */ bic ulReg, #1 /* Set privilege bit. */ msr control, ulReg /* Write back new control value. */ } break; #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */ default : /* Unknown SVC call. */ break; } } /*-----------------------------------------------------------*/ __asm void vPortSVCHandler( void ) { extern prvSVCHandler PRESERVE8 /* Assumes psp was in use. */ #ifndef USE_PROCESS_STACK /* Code should not be required if a main() is using the process stack. */ tst lr, #4 ite eq mrseq r0, msp mrsne r0, psp #else mrs r0, psp #endif b prvSVCHandler } /*-----------------------------------------------------------*/ __asm void prvRestoreContextOfFirstTask( void ) { PRESERVE8 ldr r0, =0xE000ED08 /* Use the NVIC offset register to locate the stack. */ ldr r0, [r0] ldr r0, [r0] msr msp, r0 /* Set the msp back to the start of the stack. */ ldr r3, =pxCurrentTCB /* Restore the context. */ ldr r1, [r3] ldr r0, [r1] /* The first item in the TCB is the task top of stack. */ add r1, r1, #4 /* Move onto the second item in the TCB... */ dmb /* Complete outstanding transfers before disabling MPU. */ ldr r2, =0xe000ed94 /* MPU_CTRL register. */ ldr r3, [r2] /* Read the value of MPU_CTRL. */ bic r3, r3, #1 /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */ str r3, [r2] /* Disable MPU. */ ldr r2, =0xe000ed9c /* Region Base Address register. */ ldmia r1!, {r4-r11} /* Read 4 sets of MPU registers. */ stmia r2!, {r4-r11} /* Write 4 sets of MPU registers. */ ldr r2, =0xe000ed94 /* MPU_CTRL register. */ ldr r3, [r2] /* Read the value of MPU_CTRL. */ orr r3, r3, #1 /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */ str r3, [r2] /* Enable MPU. */ dsb /* Force memory writes before continuing. */ ldmia r0!, {r3-r11, r14} /* Pop the registers that are not automatically saved on exception entry. */ msr control, r3 msr psp, r0 /* Restore the task stack pointer. */ mov r0, #0 msr basepri, r0 bx r14 nop } /*-----------------------------------------------------------*/ /* * See header file for description. */ BaseType_t xPortStartScheduler( void ) { /* configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See * http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY ) ); #if( configASSERT_DEFINED == 1 ) { volatile uint32_t ulOriginalPriority; volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER ); volatile uint8_t ucMaxPriorityValue; /* Determine the maximum priority from which ISR safe FreeRTOS API * functions can be called. ISR safe functions are those that end in * "FromISR". FreeRTOS maintains separate thread and ISR API functions to * ensure interrupt entry is as fast and simple as possible. * Save the interrupt priority value that is about to be clobbered. */ ulOriginalPriority = *pucFirstUserPriorityRegister; /* Determine the number of priority bits available. First write to all * possible bits. */ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; /* Read the value back to see how many bits stuck. */ ucMaxPriorityValue = *pucFirstUserPriorityRegister; /* Use the same mask on the maximum system call priority. */ ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue; /* Calculate the maximum acceptable priority group value for the number * of bits read back. */ ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS; while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE ) { ulMaxPRIGROUPValue--; ucMaxPriorityValue <<= ( uint8_t ) 0x01; } #ifdef __NVIC_PRIO_BITS { /* Check the CMSIS configuration that defines the number of * priority bits matches the number of priority bits actually queried * from the hardware. */ configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS ); } #endif #ifdef configPRIO_BITS { /* Check the FreeRTOS configuration that defines the number of * priority bits matches the number of priority bits actually queried * from the hardware. */ configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS ); } #endif /* Shift the priority group value back to its position within the AIRCR * register. */ ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT; ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK; /* Restore the clobbered interrupt priority register to its original * value. */ *pucFirstUserPriorityRegister = ulOriginalPriority; } #endif /* conifgASSERT_DEFINED */ /* Make PendSV and SysTick the same priority as the kernel, and the SVC * handler higher priority so it can be used to exit a critical section (where * lower priorities are masked). */ portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI; portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI; /* Configure the regions in the MPU that are common to all tasks. */ prvSetupMPU(); /* Start the timer that generates the tick ISR. Interrupts are disabled * here already. */ vSetupTimerInterrupt(); /* Initialise the critical nesting count ready for the first task. */ uxCriticalNesting = 0; /* Ensure the VFP is enabled - it should be anyway. */ vPortEnableVFP(); /* Lazy save always. */ *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS; /* Start the first task. */ prvStartFirstTask(); /* Should not get here! */ return 0; } /*-----------------------------------------------------------*/ __asm void prvStartFirstTask( void ) { PRESERVE8 /* Use the NVIC offset register to locate the stack. */ ldr r0, =0xE000ED08 ldr r0, [r0] ldr r0, [r0] /* Set the msp back to the start of the stack. */ msr msp, r0 /* Clear the bit that indicates the FPU is in use in case the FPU was used * before the scheduler was started - which would otherwise result in the * unnecessary leaving of space in the SVC stack for lazy saving of FPU * registers. */ mov r0, #0 msr control, r0 /* Globally enable interrupts. */ cpsie i cpsie f dsb isb svc portSVC_START_SCHEDULER /* System call to start first task. */ nop nop } void vPortEndScheduler( void ) { /* Not implemented in ports where there is nothing to return to. * Artificially force an assert. */ configASSERT( uxCriticalNesting == 1000UL ); } /*-----------------------------------------------------------*/ void vPortEnterCritical( void ) { BaseType_t xRunningPrivileged = xPortRaisePrivilege(); portDISABLE_INTERRUPTS(); uxCriticalNesting++; vPortResetPrivilege( xRunningPrivileged ); } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { BaseType_t xRunningPrivileged = xPortRaisePrivilege(); configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } vPortResetPrivilege( xRunningPrivileged ); } /*-----------------------------------------------------------*/ __asm void xPortPendSVHandler( void ) { extern uxCriticalNesting; extern pxCurrentTCB; extern vTaskSwitchContext; PRESERVE8 mrs r0, psp ldr r3, =pxCurrentTCB /* Get the location of the current TCB. */ ldr r2, [r3] tst r14, #0x10 /* Is the task using the FPU context? If so, push high vfp registers. */ it eq vstmdbeq r0!, {s16-s31} mrs r1, control stmdb r0!, {r1, r4-r11, r14} /* Save the remaining registers. */ str r0, [r2] /* Save the new top of stack into the first member of the TCB. */ stmdb sp!, {r0, r3} mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY msr basepri, r0 dsb isb bl vTaskSwitchContext mov r0, #0 msr basepri, r0 ldmia sp!, {r0, r3} /* Restore the context. */ ldr r1, [r3] ldr r0, [r1] /* The first item in the TCB is the task top of stack. */ add r1, r1, #4 /* Move onto the second item in the TCB... */ dmb /* Complete outstanding transfers before disabling MPU. */ ldr r2, =0xe000ed94 /* MPU_CTRL register. */ ldr r3, [r2] /* Read the value of MPU_CTRL. */ bic r3, r3, #1 /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */ str r3, [r2] /* Disable MPU. */ ldr r2, =0xe000ed9c /* Region Base Address register. */ ldmia r1!, {r4-r11} /* Read 4 sets of MPU registers. */ stmia r2!, {r4-r11} /* Write 4 sets of MPU registers. */ ldr r2, =0xe000ed94 /* MPU_CTRL register. */ ldr r3, [r2] /* Read the value of MPU_CTRL. */ orr r3, r3, #1 /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */ str r3, [r2] /* Enable MPU. */ dsb /* Force memory writes before continuing. */ ldmia r0!, {r3-r11, r14} /* Pop the registers that are not automatically saved on exception entry. */ msr control, r3 tst r14, #0x10 /* Is the task using the FPU context? If so, pop the high vfp registers too. */ it eq vldmiaeq r0!, {s16-s31} msr psp, r0 bx r14 nop } /*-----------------------------------------------------------*/ void xPortSysTickHandler( void ) { uint32_t ulDummy; ulDummy = portSET_INTERRUPT_MASK_FROM_ISR(); { /* Increment the RTOS tick. */ if( xTaskIncrementTick() != pdFALSE ) { /* Pend a context switch. */ portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; } } portCLEAR_INTERRUPT_MASK_FROM_ISR( ulDummy ); } /*-----------------------------------------------------------*/ /* * Setup the systick timer to generate the tick interrupts at the required * frequency. */ __weak void vSetupTimerInterrupt( void ) { /* Reset the SysTick. */ portNVIC_SYSTICK_CTRL_REG = 0UL; portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; /* Configure SysTick to interrupt at the requested rate. */ portNVIC_SYSTICK_LOAD_REG = ( configCPU_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL; portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK | portNVIC_SYSTICK_INT | portNVIC_SYSTICK_ENABLE; } /*-----------------------------------------------------------*/ __asm void vPortSwitchToUserMode( void ) { PRESERVE8 mrs r0, control orr r0, #1 msr control, r0 bx r14 } /*-----------------------------------------------------------*/ __asm void vPortEnableVFP( void ) { PRESERVE8 ldr.w r0, =0xE000ED88 /* The FPU enable bits are in the CPACR. */ ldr r1, [r0] orr r1, r1, #( 0xf << 20 ) /* Enable CP10 and CP11 coprocessors, then save back. */ str r1, [r0] bx r14 nop nop } /*-----------------------------------------------------------*/ static void prvSetupMPU( void ) { extern uint32_t __privileged_functions_start__; extern uint32_t __privileged_functions_end__; extern uint32_t __FLASH_segment_start__; extern uint32_t __FLASH_segment_end__; extern uint32_t __privileged_data_start__; extern uint32_t __privileged_data_end__; /* Check the expected MPU is present. */ if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE ) { /* First setup the unprivileged flash for unprivileged read only access. */ portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __FLASH_segment_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portUNPRIVILEGED_FLASH_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_ONLY ) | ( portMPU_REGION_CACHEABLE_BUFFERABLE ) | ( prvGetMPURegionSizeSetting( ( uint32_t ) __FLASH_segment_end__ - ( uint32_t ) __FLASH_segment_start__ ) ) | ( portMPU_REGION_ENABLE ); /* Setup the privileged flash for privileged only access. This is where * the kernel code is placed. */ portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_functions_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portPRIVILEGED_FLASH_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_ONLY ) | ( portMPU_REGION_CACHEABLE_BUFFERABLE ) | ( prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_functions_end__ - ( uint32_t ) __privileged_functions_start__ ) ) | ( portMPU_REGION_ENABLE ); /* Setup the privileged data RAM region. This is where the kernel data * is placed. */ portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portPRIVILEGED_RAM_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) | ( portMPU_REGION_CACHEABLE_BUFFERABLE ) | prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) | ( portMPU_REGION_ENABLE ); /* By default allow everything to access the general peripherals. The * system peripherals and registers are protected. */ portMPU_REGION_BASE_ADDRESS_REG = ( portPERIPHERALS_START_ADDRESS ) | ( portMPU_REGION_VALID ) | ( portGENERAL_PERIPHERALS_REGION ); portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_WRITE | portMPU_REGION_EXECUTE_NEVER ) | ( prvGetMPURegionSizeSetting( portPERIPHERALS_END_ADDRESS - portPERIPHERALS_START_ADDRESS ) ) | ( portMPU_REGION_ENABLE ); /* Enable the memory fault exception. */ portNVIC_SYS_CTRL_STATE_REG |= portNVIC_MEM_FAULT_ENABLE; /* Enable the MPU with the background region configured. */ portMPU_CTRL_REG |= ( portMPU_ENABLE | portMPU_BACKGROUND_ENABLE ); } } /*-----------------------------------------------------------*/ static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) { uint32_t ulRegionSize, ulReturnValue = 4; /* 32 is the smallest region size, 31 is the largest valid value for * ulReturnValue. */ for( ulRegionSize = 32UL; ulReturnValue < 31UL; ( ulRegionSize <<= 1UL ) ) { if( ulActualSizeInBytes <= ulRegionSize ) { break; } else { ulReturnValue++; } } /* Shift the code by one before returning so it can be written directly * into the the correct bit position of the attribute register. */ return ( ulReturnValue << 1UL ); } /*-----------------------------------------------------------*/ __asm BaseType_t xIsPrivileged( void ) { PRESERVE8 mrs r0, control /* r0 = CONTROL. */ tst r0, #1 /* Perform r0 & 1 (bitwise AND) and update the conditions flag. */ ite ne movne r0, #0 /* CONTROL[0]!=0. Return false to indicate that the processor is not privileged. */ moveq r0, #1 /* CONTROL[0]==0. Return true to indicate that the processor is privileged. */ bx lr /* Return. */ } /*-----------------------------------------------------------*/ __asm void vResetPrivilege( void ) { PRESERVE8 mrs r0, control /* r0 = CONTROL. */ orrs r0, #1 /* r0 = r0 | 1. */ msr control, r0 /* CONTROL = r0. */ bx lr /* Return. */ } /*-----------------------------------------------------------*/ void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint32_t ulStackDepth ) { extern uint32_t __SRAM_segment_start__; extern uint32_t __SRAM_segment_end__; extern uint32_t __privileged_data_start__; extern uint32_t __privileged_data_end__; int32_t lIndex; uint32_t ul; if( xRegions == NULL ) { /* No MPU regions are specified so allow access to all RAM. */ xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress = ( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portSTACK_REGION ); xMPUSettings->xRegion[ 0 ].ulRegionAttribute = ( portMPU_REGION_READ_WRITE ) | ( portMPU_REGION_CACHEABLE_BUFFERABLE ) | ( prvGetMPURegionSizeSetting( ( uint32_t ) __SRAM_segment_end__ - ( uint32_t ) __SRAM_segment_start__ ) ) | ( portMPU_REGION_ENABLE ); /* Re-instate the privileged only RAM region as xRegion[ 0 ] will have * just removed the privileged only parameters. */ xMPUSettings->xRegion[ 1 ].ulRegionBaseAddress = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */ ( portMPU_REGION_VALID ) | ( portSTACK_REGION + 1 ); xMPUSettings->xRegion[ 1 ].ulRegionAttribute = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) | ( portMPU_REGION_CACHEABLE_BUFFERABLE ) | prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) | ( portMPU_REGION_ENABLE ); /* Invalidate all other regions. */ for( ul = 2; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ ) { xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( portSTACK_REGION + ul ) | portMPU_REGION_VALID; xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL; } } else { /* This function is called automatically when the task is created - in * which case the stack region parameters will be valid. At all other * times the stack parameters will not be valid and it is assumed that the * stack region has already been configured. */ if( ulStackDepth > 0 ) { /* Define the region that allows access to the stack. */ xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress = ( ( uint32_t ) pxBottomOfStack ) | ( portMPU_REGION_VALID ) | ( portSTACK_REGION ); /* Region number. */ xMPUSettings->xRegion[ 0 ].ulRegionAttribute = ( portMPU_REGION_READ_WRITE ) | /* Read and write. */ ( prvGetMPURegionSizeSetting( ulStackDepth * ( uint32_t ) sizeof( StackType_t ) ) ) | ( portMPU_REGION_CACHEABLE_BUFFERABLE ) | ( portMPU_REGION_ENABLE ); } lIndex = 0; for( ul = 1; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ ) { if( ( xRegions[ lIndex ] ).ulLengthInBytes > 0UL ) { /* Translate the generic region definition contained in * xRegions into the CM3 specific MPU settings that are then * stored in xMPUSettings. */ xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) | ( portMPU_REGION_VALID ) | ( portSTACK_REGION + ul ); /* Region number. */ xMPUSettings->xRegion[ ul ].ulRegionAttribute = ( prvGetMPURegionSizeSetting( xRegions[ lIndex ].ulLengthInBytes ) ) | ( xRegions[ lIndex ].ulParameters ) | ( portMPU_REGION_ENABLE ); } else { /* Invalidate the region. */ xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( portSTACK_REGION + ul ) | portMPU_REGION_VALID; xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL; } lIndex++; } } } /*-----------------------------------------------------------*/ __asm uint32_t prvPortGetIPSR( void ) { PRESERVE8 mrs r0, ipsr bx r14 } /*-----------------------------------------------------------*/ #if( configASSERT_DEFINED == 1 ) void vPortValidateInterruptPriority( void ) { uint32_t ulCurrentInterrupt; uint8_t ucCurrentPriority; /* Obtain the number of the currently executing interrupt. */ ulCurrentInterrupt = prvPortGetIPSR(); /* Is the interrupt number a user defined interrupt? */ if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER ) { /* Look up the interrupt's priority. */ ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ]; /* The following assertion will fail if a service routine (ISR) for * an interrupt that has been assigned a priority above * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API * function. ISR safe FreeRTOS API functions must *only* be called * from interrupts that have been assigned a priority at or below * configMAX_SYSCALL_INTERRUPT_PRIORITY. * Numerically low interrupt priority numbers represent logically high * interrupt priorities, therefore the priority of the interrupt must * be set to a value equal to or numerically *higher* than * configMAX_SYSCALL_INTERRUPT_PRIORITY. * Interrupts that use the FreeRTOS API must not be left at their * default priority of zero as that is the highest possible priority, * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY, * and therefore also guaranteed to be invalid. * FreeRTOS maintains separate thread and ISR API functions to ensure * interrupt entry is as fast and simple as possible. * The following links provide detailed information: * http://www.freertos.org/RTOS-Cortex-M3-M4.html * http://www.freertos.org/FAQHelp.html */ configASSERT( ucCurrentPriority >= ucMaxSysCallPriority ); } /* Priority grouping: The interrupt controller (NVIC) allows the bits * that define each interrupt's priority to be split between bits that * define the interrupt's pre-emption priority bits and bits that define * the interrupt's sub-priority. For simplicity all bits must be defined * to be pre-emption priority bits. The following assertion will fail if * this is not the case (if some bits represent a sub-priority). * If the application only uses CMSIS libraries for interrupt * configuration then the correct setting can be achieved on all Cortex-M * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the * scheduler. Note however that some vendor specific peripheral libraries * assume a non-zero priority group setting, in which cases using a value * of zero will result in unpredicable behaviour. */ configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue ); } #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/