/* * FreeRTOS Kernel * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* * A sample implementation of pvPortMalloc() and vPortFree() that combines * (coalescences) adjacent memory blocks as they are freed, and in so doing * limits memory fragmentation. * * See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the * memory management pages of https://www.FreeRTOS.org for more information. */ #include /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers. That should only be done when * task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE #include "FreeRTOS.h" #include "task.h" #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE #if ( configSUPPORT_DYNAMIC_ALLOCATION == 0 ) #error This file must not be used if configSUPPORT_DYNAMIC_ALLOCATION is 0 #endif /* Block sizes must not get too small. */ #define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize << 1 ) ) /* Assumes 8bit bytes! */ #define heapBITS_PER_BYTE ( ( size_t ) 8 ) /* Allocate the memory for the heap. */ #if ( configAPPLICATION_ALLOCATED_HEAP == 1 ) /* The application writer has already defined the array used for the RTOS * heap - probably so it can be placed in a special segment or address. */ extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ]; #else PRIVILEGED_DATA static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ]; #endif /* configAPPLICATION_ALLOCATED_HEAP */ /* Define the linked list structure. This is used to link free blocks in order * of their memory address. */ typedef struct A_BLOCK_LINK { struct A_BLOCK_LINK * pxNextFreeBlock; /*<< The next free block in the list. */ size_t xBlockSize; /*<< The size of the free block. */ } BlockLink_t; /*-----------------------------------------------------------*/ /* * Inserts a block of memory that is being freed into the correct position in * the list of free memory blocks. The block being freed will be merged with * the block in front it and/or the block behind it if the memory blocks are * adjacent to each other. */ static void prvInsertBlockIntoFreeList( BlockLink_t * pxBlockToInsert ) PRIVILEGED_FUNCTION; /* * Called automatically to setup the required heap structures the first time * pvPortMalloc() is called. */ static void prvHeapInit( void ) PRIVILEGED_FUNCTION; /*-----------------------------------------------------------*/ /* The size of the structure placed at the beginning of each allocated memory * block must by correctly byte aligned. */ static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK ); /* Create a couple of list links to mark the start and end of the list. */ PRIVILEGED_DATA static BlockLink_t xStart, * pxEnd = NULL; /* Keeps track of the number of calls to allocate and free memory as well as the * number of free bytes remaining, but says nothing about fragmentation. */ PRIVILEGED_DATA static size_t xFreeBytesRemaining = 0U; PRIVILEGED_DATA static size_t xMinimumEverFreeBytesRemaining = 0U; PRIVILEGED_DATA static size_t xNumberOfSuccessfulAllocations = 0; PRIVILEGED_DATA static size_t xNumberOfSuccessfulFrees = 0; /* Gets set to the top bit of an size_t type. When this bit in the xBlockSize * member of an BlockLink_t structure is set then the block belongs to the * application. When the bit is free the block is still part of the free heap * space. */ PRIVILEGED_DATA static size_t xBlockAllocatedBit = 0; /*-----------------------------------------------------------*/ void * pvPortMalloc( size_t xWantedSize ) { BlockLink_t * pxBlock, * pxPreviousBlock, * pxNewBlockLink; void * pvReturn = NULL; vTaskSuspendAll(); { /* If this is the first call to malloc then the heap will require * initialisation to setup the list of free blocks. */ if( pxEnd == NULL ) { prvHeapInit(); } else { mtCOVERAGE_TEST_MARKER(); } /* Check the requested block size is not so large that the top bit is * set. The top bit of the block size member of the BlockLink_t structure * is used to determine who owns the block - the application or the * kernel, so it must be free. */ if( ( xWantedSize & xBlockAllocatedBit ) == 0 ) { /* The wanted size must be increased so it can contain a BlockLink_t * structure in addition to the requested amount of bytes. */ if( ( xWantedSize > 0 ) && ( ( xWantedSize + xHeapStructSize ) > xWantedSize ) ) /* Overflow check */ { xWantedSize += xHeapStructSize; /* Ensure that blocks are always aligned. */ if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 ) { /* Byte alignment required. Check for overflow. */ if( ( xWantedSize + ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) ) ) > xWantedSize ) { xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) ); configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 ); } else { xWantedSize = 0; } } else { mtCOVERAGE_TEST_MARKER(); } } else { xWantedSize = 0; } if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) ) { /* Traverse the list from the start (lowest address) block until * one of adequate size is found. */ pxPreviousBlock = &xStart; pxBlock = xStart.pxNextFreeBlock; while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) ) { pxPreviousBlock = pxBlock; pxBlock = pxBlock->pxNextFreeBlock; } /* If the end marker was reached then a block of adequate size * was not found. */ if( pxBlock != pxEnd ) { /* Return the memory space pointed to - jumping over the * BlockLink_t structure at its start. */ pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize ); /* This block is being returned for use so must be taken out * of the list of free blocks. */ pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock; /* If the block is larger than required it can be split into * two. */ if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE ) { /* This block is to be split into two. Create a new * block following the number of bytes requested. The void * cast is used to prevent byte alignment warnings from the * compiler. */ pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize ); configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 ); /* Calculate the sizes of two blocks split from the * single block. */ pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize; pxBlock->xBlockSize = xWantedSize; /* Insert the new block into the list of free blocks. */ prvInsertBlockIntoFreeList( pxNewBlockLink ); } else { mtCOVERAGE_TEST_MARKER(); } xFreeBytesRemaining -= pxBlock->xBlockSize; if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining ) { xMinimumEverFreeBytesRemaining = xFreeBytesRemaining; } else { mtCOVERAGE_TEST_MARKER(); } /* The block is being returned - it is allocated and owned * by the application and has no "next" block. */ pxBlock->xBlockSize |= xBlockAllocatedBit; pxBlock->pxNextFreeBlock = NULL; xNumberOfSuccessfulAllocations++; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceMALLOC( pvReturn, xWantedSize ); } ( void ) xTaskResumeAll(); #if ( configUSE_MALLOC_FAILED_HOOK == 1 ) { if( pvReturn == NULL ) { extern void vApplicationMallocFailedHook( void ); vApplicationMallocFailedHook(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* if ( configUSE_MALLOC_FAILED_HOOK == 1 ) */ configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 ); return pvReturn; } /*-----------------------------------------------------------*/ void vPortFree( void * pv ) { uint8_t * puc = ( uint8_t * ) pv; BlockLink_t * pxLink; if( pv != NULL ) { /* The memory being freed will have an BlockLink_t structure immediately * before it. */ puc -= xHeapStructSize; /* This casting is to keep the compiler from issuing warnings. */ pxLink = ( void * ) puc; /* Check the block is actually allocated. */ configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 ); configASSERT( pxLink->pxNextFreeBlock == NULL ); if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 ) { if( pxLink->pxNextFreeBlock == NULL ) { /* The block is being returned to the heap - it is no longer * allocated. */ pxLink->xBlockSize &= ~xBlockAllocatedBit; vTaskSuspendAll(); { /* Add this block to the list of free blocks. */ xFreeBytesRemaining += pxLink->xBlockSize; traceFREE( pv, pxLink->xBlockSize ); prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) ); xNumberOfSuccessfulFrees++; } ( void ) xTaskResumeAll(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } } /*-----------------------------------------------------------*/ size_t xPortGetFreeHeapSize( void ) { return xFreeBytesRemaining; } /*-----------------------------------------------------------*/ size_t xPortGetMinimumEverFreeHeapSize( void ) { return xMinimumEverFreeBytesRemaining; } /*-----------------------------------------------------------*/ void vPortInitialiseBlocks( void ) { /* This just exists to keep the linker quiet. */ } /*-----------------------------------------------------------*/ static void prvHeapInit( void ) /* PRIVILEGED_FUNCTION */ { BlockLink_t * pxFirstFreeBlock; uint8_t * pucAlignedHeap; size_t uxAddress; size_t xTotalHeapSize = configTOTAL_HEAP_SIZE; /* Ensure the heap starts on a correctly aligned boundary. */ uxAddress = ( size_t ) ucHeap; if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 ) { uxAddress += ( portBYTE_ALIGNMENT - 1 ); uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK ); xTotalHeapSize -= uxAddress - ( size_t ) ucHeap; } pucAlignedHeap = ( uint8_t * ) uxAddress; /* xStart is used to hold a pointer to the first item in the list of free * blocks. The void cast is used to prevent compiler warnings. */ xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap; xStart.xBlockSize = ( size_t ) 0; /* pxEnd is used to mark the end of the list of free blocks and is inserted * at the end of the heap space. */ uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize; uxAddress -= xHeapStructSize; uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK ); pxEnd = ( void * ) uxAddress; pxEnd->xBlockSize = 0; pxEnd->pxNextFreeBlock = NULL; /* To start with there is a single free block that is sized to take up the * entire heap space, minus the space taken by pxEnd. */ pxFirstFreeBlock = ( void * ) pucAlignedHeap; pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock; pxFirstFreeBlock->pxNextFreeBlock = pxEnd; /* Only one block exists - and it covers the entire usable heap space. */ xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize; xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize; /* Work out the position of the top bit in a size_t variable. */ xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 ); } /*-----------------------------------------------------------*/ static void prvInsertBlockIntoFreeList( BlockLink_t * pxBlockToInsert ) /* PRIVILEGED_FUNCTION */ { BlockLink_t * pxIterator; uint8_t * puc; /* Iterate through the list until a block is found that has a higher address * than the block being inserted. */ for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock ) { /* Nothing to do here, just iterate to the right position. */ } /* Do the block being inserted, and the block it is being inserted after * make a contiguous block of memory? */ puc = ( uint8_t * ) pxIterator; if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert ) { pxIterator->xBlockSize += pxBlockToInsert->xBlockSize; pxBlockToInsert = pxIterator; } else { mtCOVERAGE_TEST_MARKER(); } /* Do the block being inserted, and the block it is being inserted before * make a contiguous block of memory? */ puc = ( uint8_t * ) pxBlockToInsert; if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock ) { if( pxIterator->pxNextFreeBlock != pxEnd ) { /* Form one big block from the two blocks. */ pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize; pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock; } else { pxBlockToInsert->pxNextFreeBlock = pxEnd; } } else { pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; } /* If the block being inserted plugged a gab, so was merged with the block * before and the block after, then it's pxNextFreeBlock pointer will have * already been set, and should not be set here as that would make it point * to itself. */ if( pxIterator != pxBlockToInsert ) { pxIterator->pxNextFreeBlock = pxBlockToInsert; } else { mtCOVERAGE_TEST_MARKER(); } } /*-----------------------------------------------------------*/ void vPortGetHeapStats( HeapStats_t * pxHeapStats ) { BlockLink_t * pxBlock; size_t xBlocks = 0, xMaxSize = 0, xMinSize = portMAX_DELAY; /* portMAX_DELAY used as a portable way of getting the maximum value. */ vTaskSuspendAll(); { pxBlock = xStart.pxNextFreeBlock; /* pxBlock will be NULL if the heap has not been initialised. The heap * is initialised automatically when the first allocation is made. */ if( pxBlock != NULL ) { do { /* Increment the number of blocks and record the largest block seen * so far. */ xBlocks++; if( pxBlock->xBlockSize > xMaxSize ) { xMaxSize = pxBlock->xBlockSize; } if( pxBlock->xBlockSize < xMinSize ) { xMinSize = pxBlock->xBlockSize; } /* Move to the next block in the chain until the last block is * reached. */ pxBlock = pxBlock->pxNextFreeBlock; } while( pxBlock != pxEnd ); } } ( void ) xTaskResumeAll(); pxHeapStats->xSizeOfLargestFreeBlockInBytes = xMaxSize; pxHeapStats->xSizeOfSmallestFreeBlockInBytes = xMinSize; pxHeapStats->xNumberOfFreeBlocks = xBlocks; taskENTER_CRITICAL(); { pxHeapStats->xAvailableHeapSpaceInBytes = xFreeBytesRemaining; pxHeapStats->xNumberOfSuccessfulAllocations = xNumberOfSuccessfulAllocations; pxHeapStats->xNumberOfSuccessfulFrees = xNumberOfSuccessfulFrees; pxHeapStats->xMinimumEverFreeBytesRemaining = xMinimumEverFreeBytesRemaining; } taskEXIT_CRITICAL(); }