Update the A2F SoftConsole project to match the current A2F IAR project.

This commit is contained in:
Richard Barry 2011-04-27 16:05:36 +00:00
parent 9b6bd9e419
commit 5831485bdf
10 changed files with 563 additions and 539 deletions

View File

@ -1,38 +1,44 @@
/*
FreeRTOS V6.1.1 - Copyright (C) 2011 Real Time Engineers Ltd.
FreeRTOS V7.0.0 - Copyright (C) 2011 Real Time Engineers Ltd.
FreeRTOS supports many tools and architectures. V7.0.0 is sponsored by:
Atollic AB - Atollic provides professional embedded systems development
tools for C/C++ development, code analysis and test automation.
See http://www.atollic.com
***************************************************************************
* *
* If you are: *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* + New to FreeRTOS, *
* + Wanting to learn FreeRTOS or multitasking in general quickly *
* + Looking for basic training, *
* + Wanting to improve your FreeRTOS skills and productivity *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* then take a look at the FreeRTOS books - available as PDF or paperback *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* "Using the FreeRTOS Real Time Kernel - a Practical Guide" *
* http://www.FreeRTOS.org/Documentation *
* *
* A pdf reference manual is also available. Both are usually delivered *
* to your inbox within 20 minutes to two hours when purchased between 8am *
* and 8pm GMT (although please allow up to 24 hours in case of *
* exceptional circumstances). Thank you for your support! *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
***NOTE*** The exception to the GPL is included to allow you to distribute
a combined work that includes FreeRTOS without being obliged to provide the
source code for proprietary components outside of the FreeRTOS kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
@ -57,12 +63,15 @@
* executed from within CCS4! Once it has been executed, re-open or refresh
* the CCS4 project and remove the #error line below.
*/
//#error Ensure CreateProjectDirectoryStructure.bat has been executed before building. See comment immediately above.
#error Ensure CreateProjectDirectoryStructure.bat has been executed before building. See comment immediately above.
#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H
#include <stdint.h>
#include <stddef.h>
/*-----------------------------------------------------------
* Application specific definitions.
*
@ -75,21 +84,23 @@
* See http://www.freertos.org/a00110.html.
*----------------------------------------------------------*/
extern uint32_t SystemFrequency;
#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 1
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ ( 75000000UL )
#define configCPU_CLOCK_HZ ( SystemFrequency )
#define configTICK_RATE_HZ ( ( portTickType ) 1000 )
#define configMAX_PRIORITIES ( ( unsigned portBASE_TYPE ) 5 )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 70 )
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 40 * 1024 ) )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 90 )
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 30 * 1024 ) )
#define configMAX_TASK_NAME_LEN ( 10 )
#define configUSE_TRACE_FACILITY 1
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 1
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 0
#define configGENERATE_RUN_TIME_STATS 0
#define configGENERATE_RUN_TIME_STATS 1
#define configCHECK_FOR_STACK_OVERFLOW 2
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_MALLOC_FAILED_HOOK 1
@ -102,7 +113,7 @@
/* Software timer definitions. */
#define configUSE_TIMERS 1
#define configTIMER_TASK_PRIORITY ( 3 )
#define configTIMER_TASK_PRIORITY ( 2 )
#define configTIMER_QUEUE_LENGTH 10
#define configTIMER_TASK_STACK_DEPTH ( configMINIMAL_STACK_SIZE * 2 )
@ -116,6 +127,11 @@ to exclude the API function. */
#define INCLUDE_vTaskDelayUntil 1
#define INCLUDE_vTaskDelay 1
void vMainConfigureTimerForRunTimeStats( void );
unsigned long ulGetRunTimeCounterValue( void );
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() vMainConfigureTimerForRunTimeStats()
#define portGET_RUN_TIME_COUNTER_VALUE() ulGetRunTimeCounterValue()
/* Use the system definition, if there is one */
#ifdef __NVIC_PRIO_BITS
#define configPRIO_BITS __NVIC_PRIO_BITS

View File

@ -7,6 +7,8 @@
* SVN $Revision: 2152 $
* SVN $Date: 2010-02-11 14:44:11 +0000 (Thu, 11 Feb 2010) $
*/
#include "i2c.h"
#include "../../CMSIS/mss_assert.h"
@ -145,6 +147,14 @@ void MSS_I2C_init
this_i2c->hw_reg_bit->CTRL_CR1 = (clock_speed >> 1) & 0x01;
this_i2c->hw_reg_bit->CTRL_CR0 = clock_speed & 0x01;
this_i2c->hw_reg->ADDR = this_i2c->ser_address;
/* The interrupt can cause a context switch, so ensure its priority is
between configKERNEL_INTERRUPT_PRIORITY and configMAX_SYSCALL_INTERRUPT_PRIORITY. */
NVIC_SetPriority( this_i2c->irqn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
vSemaphoreCreateBinary( ( this_i2c->xI2CCompleteSemaphore ) );
xSemaphoreTake( ( this_i2c->xI2CCompleteSemaphore ), 0 );
configASSERT( ( this_i2c->xI2CCompleteSemaphore ) );
}
/*------------------------------------------------------------------------------
@ -196,6 +206,7 @@ void MSS_I2C_write
uint32_t primask;
ASSERT( (this_i2c == &g_mss_i2c0) || (this_i2c == &g_mss_i2c1) );
configASSERT( ( this_i2c->xI2CCompleteSemaphore ) );
primask = disable_interrupts();
@ -431,11 +442,28 @@ mss_i2c_status_t MSS_I2C_wait_complete
{
ASSERT( (this_i2c == &g_mss_i2c0) || (this_i2c == &g_mss_i2c1) );
#ifdef USE_OLD_I2C_POLLING_CODE
while ( this_i2c->status == MSS_I2C_IN_PROGRESS )
{
/* Wait for transaction to compltete.*/
;
}
#else
configASSERT( ( this_i2c->xI2CCompleteSemaphore ) );
if( xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED )
{
while ( this_i2c->status == MSS_I2C_IN_PROGRESS )
{
/* Wait for transaction to compltete.*/
;
}
}
else
{
xSemaphoreTake( this_i2c->xI2CCompleteSemaphore, portMAX_DELAY );
}
#endif
return this_i2c->status;
}
@ -457,6 +485,8 @@ static void mss_i2c_isr
uint8_t data;
uint8_t hold_bus;
uint8_t clear_irq = 1;
long lHigherPriorityTaskWoken = pdFALSE;
configASSERT( ( this_i2c->xI2CCompleteSemaphore ) );
ASSERT( (this_i2c == &g_mss_i2c0) || (this_i2c == &g_mss_i2c1) );
@ -539,6 +569,7 @@ static void mss_i2c_isr
clear_irq = 0;
}
this_i2c->status = MSS_I2C_SUCCESS;
xSemaphoreGiveFromISR( this_i2c->xI2CCompleteSemaphore, &lHigherPriorityTaskWoken );
}
break;
@ -577,6 +608,7 @@ static void mss_i2c_isr
clear_irq = 0;
}
this_i2c->status = MSS_I2C_SUCCESS;
xSemaphoreGiveFromISR( this_i2c->xI2CCompleteSemaphore, &lHigherPriorityTaskWoken );
}
break;
@ -600,6 +632,7 @@ static void mss_i2c_isr
case ST_SLAR_NACK: /* SLA+R tx'ed; let's release the bus (send a stop condition) */
this_i2c->hw_reg_bit->CTRL_STO = 0x01;
this_i2c->status = MSS_I2C_FAILED;
xSemaphoreGiveFromISR( this_i2c->xI2CCompleteSemaphore, &lHigherPriorityTaskWoken );
break;
case ST_RX_DATA_ACK: /* Data byte received, ACK returned */
@ -630,6 +663,7 @@ static void mss_i2c_isr
}
this_i2c->status = MSS_I2C_SUCCESS;
// xSemaphoreGiveFromISR( this_i2c->xI2CCompleteSemaphore, &lHigherPriorityTaskWoken );
break;
/******************** SLAVE RECEIVER **************************/
@ -696,6 +730,7 @@ static void mss_i2c_isr
}
/* Mark any previous master write transaction as complete. */
this_i2c->status = MSS_I2C_SUCCESS;
// xSemaphoreGiveFromISR( this_i2c->xI2CCompleteSemaphore, &lHigherPriorityTaskWoken );
break;
case ST_SLV_RST: /* SMBUS ONLY: timeout state. must clear interrupt */
@ -747,6 +782,8 @@ static void mss_i2c_isr
/* Read the status register to ensure the last I2C registers write took place
* in a system built around a bus making use of posted writes. */
status = this_i2c->hw_reg->STATUS;
portEND_SWITCHING_ISR( lHigherPriorityTaskWoken );
}
/*------------------------------------------------------------------------------

View File

@ -194,6 +194,11 @@
#include "../../CMSIS/a2fxxxm3.h"
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#ifdef __cplusplus
extern "C" {
#endif
@ -325,6 +330,9 @@ typedef struct mss_i2c_instance
uint_fast8_t slave_mem_offset_length;
mss_i2c_slave_wr_handler_t slave_write_handler;
/* Used to get access to and wait for completion of an I2C transaction. */
xSemaphoreHandle xI2CCompleteSemaphore;
} mss_i2c_instance_t;
/*-------------------------------------------------------------------------*//**

View File

@ -9,6 +9,15 @@
*
******************************************************************************/
/*
*
*
* NOTE: This driver has been modified specifically for use with the* uIP stack.
* It is no longer a generic driver.
*
*
*/
#ifdef __cplusplus
extern "C" {
#endif
@ -29,7 +38,7 @@ extern "C" {
/**************************** INTERNAL DEFINES ********************************/
#define MAC_CHECK(CHECK,ERRNO) \
{if(!(CHECK)){g_mss_mac.last_error=(ERRNO); ASSERT((CHECK));}}
{if(!(CHECK)){g_mss_mac.last_error=(ERRNO); configASSERT((CHECK));}}
/*
* Flags
@ -54,8 +63,8 @@ extern "C" {
/* Allocating this many buffers will always ensure there is one free as, even
though TX_RING_SIZE is set to two, the two Tx descriptors will only ever point
to the same buffer. */
#define macNUM_BUFFERS RX_RING_SIZE + TX_RING_SIZE
#define macBUFFER_SIZE 1500
#define macNUM_BUFFERS RX_RING_SIZE + TX_RING_SIZE + 1
#define macBUFFER_SIZE 1488
/***************************************************************/
MAC_instance_t g_mss_mac;
@ -78,15 +87,16 @@ static const int8_t ErrorMessages[][MAX_ERROR_MESSAGE_WIDTH] = {
/*
* Null variables
*/
static MAC_instance_t* NULL_instance;
static uint8_t* NULL_buffer;
static MSS_MAC_callback_t NULL_callback;
/* Declare the uip_buf as a pointer, rather than the traditional array, as this
is a zero copy driver. uip_buf just gets set to whichever buffer is being
processed. */
unsigned char *uip_buf = NULL;
/**************************** INTERNAL FUNCTIONS ******************************/
static int32_t MAC_test_instance( void );
static int32_t MAC_dismiss_bad_frames( void );
static int32_t MAC_send_setup_frame( void );
@ -109,12 +119,17 @@ static void MAC_release_buffer( unsigned char *pcBufferToRelease );
#error This uIP Ethernet driver required TX_RING_SIZE to be set to 2
#endif
/* Buffers that will dynamically be allocated to/from the Tx and Rx descriptors. */
static unsigned char ucMACBuffers[ macNUM_BUFFERS ][ macBUFFER_SIZE ];
/* Buffers that will dynamically be allocated to/from the Tx and Rx descriptors.
The union is used for alignment only. */
static union xMAC_BUFFERS
{
unsigned long ulAlignmentVariable; /* For alignment only, not used anywhere. */
unsigned char ucBuffer[ macNUM_BUFFERS ][ macBUFFER_SIZE ];
} xMACBuffers;
/* Each array position indicated whether or not the buffer of the same index
is currently allocated to a descriptor (pdFALSE) or is free for use (pdTRUE). */
static unsigned char ucMACBufferFree[ macNUM_BUFFERS ];
/* Each array position indicates whether or not the buffer of the same index
is currently allocated to a descriptor (pdTRUE) or is free for use (pdFALSE). */
static unsigned char ucMACBufferInUse[ macNUM_BUFFERS ] = { 0 };
/***************************************************************************//**
* Initializes the Ethernet Controller.
@ -138,7 +153,7 @@ MSS_MAC_init
/* To start with all buffers are free. */
for( a = 0; a < macNUM_BUFFERS; a++ )
{
ucMACBufferFree[ a ] = pdTRUE;
ucMACBufferInUse[ a ] = pdFALSE;
}
/* Try to reset chip */
@ -151,9 +166,9 @@ MSS_MAC_init
/* Check reset values of some registers to constrol
* base address validity */
ASSERT( MAC->CSR0 == 0xFE000000uL );
ASSERT( MAC->CSR5 == 0xF0000000uL );
ASSERT( MAC->CSR6 == 0x32000040uL );
configASSERT( MAC->CSR0 == 0xFE000000uL );
configASSERT( MAC->CSR5 == 0xF0000000uL );
configASSERT( MAC->CSR6 == 0x32000040uL );
/* Instance setup */
MAC_memset_All( &g_mss_mac, 0u );
@ -169,8 +184,8 @@ MSS_MAC_init
/* Allocate a buffer to the descriptor, then mark the buffer as in use
(not free). */
g_mss_mac.rx_descriptors[a].buffer_1 = ( unsigned long ) &( ucMACBuffers[ a ][ 0 ] );
ucMACBufferFree[ a ] = pdFALSE;
g_mss_mac.rx_descriptors[a].buffer_1 = ( unsigned long ) &( xMACBuffers.ucBuffer[ a ][ 0 ] );
ucMACBufferInUse[ a ] = pdTRUE;
}
g_mss_mac.rx_descriptors[RX_RING_SIZE-1].descriptor_1 |= RDES1_RER;
@ -189,8 +204,6 @@ MSS_MAC_init
MAC_BITBAND->CSR0_BAR = (uint32_t)BUS_ARBITRATION_SCHEME;
/* Fixed settings */
/* No automatic polling */
MAC->CSR0 = MAC->CSR0 &~ CSR0_TAP_MASK;
/* No space between descriptors */
MAC->CSR0 = MAC->CSR0 &~ CSR0_DSL_MASK;
/* General-purpose timer works in continuous mode */
@ -198,11 +211,14 @@ MSS_MAC_init
/* Start general-purpose */
MAC->CSR11 = (MAC->CSR11 & ~CSR11_TIM_MASK) | (0x0000FFFFuL << CSR11_TIM_SHIFT);
/* Disable promiscuous mode */
MAC_BITBAND->CSR6_PR = 0u;
/* Ensure promiscous mode is off (it should be by default anyway). */
MAC_BITBAND->CSR6_PR = 0;
/* Enable store and forward */
MAC_BITBAND->CSR6_SF = 1u;
/* Perfect filter. */
MAC_BITBAND->CSR6_HP = 1;
/* Pass multcast. */
MAC_BITBAND->CSR6_PM = 1;
/* Set descriptors */
MAC->CSR3 = (uint32_t)&(g_mss_mac.rx_descriptors[0].descriptor_0);
@ -211,26 +227,25 @@ MSS_MAC_init
/* enable normal interrupts */
MAC_BITBAND->CSR7_NIE = 1u;
/* Set default MAC address and reset mac filters */
MAC_memcpy( g_mss_mac.mac_address, mac_address, 6u );
MSS_MAC_set_mac_address((uint8_t *)mac_address);
/* Detect PHY */
if( g_mss_mac.phy_address > MSS_PHY_ADDRESS_MAX )
{
PHY_probe();
ASSERT( g_mss_mac.phy_address <= MSS_PHY_ADDRESS_MAX );
configASSERT( g_mss_mac.phy_address <= MSS_PHY_ADDRESS_MAX );
}
/* Reset PHY */
PHY_reset();
/* Set flags */
g_mss_mac.flags = FLAG_MAC_INIT_DONE | FLAG_PERFECT_FILTERING;
/* Configure chip according to PHY status */
MSS_MAC_auto_setup_link();
/* Set default MAC address and reset mac filters */
MAC_memcpy( g_mss_mac.mac_address, mac_address, 6u );
MSS_MAC_set_mac_filters( 0u, NULL_buffer );
MAC_BITBAND->CSR6_RA = 1; /* Receive all. */
/* Ensure uip_buf starts by pointing somewhere. */
uip_buf = MAC_obtain_buffer();
}
@ -259,13 +274,11 @@ MSS_MAC_configure
{
int32_t ret;
ASSERT( MAC_test_instance() == MAC_OK );
ret = MAC_stop_transmission();
ASSERT( ret == MAC_OK );
configASSERT( ret == MAC_OK );
ret = MAC_stop_receiving();
ASSERT( ret == MAC_OK );
configASSERT( ret == MAC_OK );
MAC_BITBAND->CSR6_RA = (uint32_t)(((configuration & MSS_MAC_CFG_RECEIVE_ALL) != 0u) ? 1u : 0u );
MAC_BITBAND->CSR6_TTM = (((configuration & MSS_MAC_CFG_TRANSMIT_THRESHOLD_MODE) != 0u) ? 1u : 0u );
@ -322,8 +335,6 @@ MSS_MAC_get_configuration( void )
{
uint32_t configuration;
ASSERT( MAC_test_instance() == MAC_OK );
configuration = 0u;
if( MAC_BITBAND->CSR6_RA != 0u ) {
configuration |= MSS_MAC_CFG_RECEIVE_ALL;
@ -399,42 +410,42 @@ MSS_MAC_tx_packet
uint32_t desc;
unsigned long ulDescriptor;
int32_t error = MAC_OK;
extern unsigned char *uip_buf;
ASSERT( MAC_test_instance() == MAC_OK );
configASSERT( uip_buf != NULL_buffer );
ASSERT( uip_buf != NULL_buffer );
ASSERT( usLength >= 12 );
configASSERT( usLength >= 12 );
if( (g_mss_mac.flags & FLAG_EXCEED_LIMIT) == 0u )
{
ASSERT( usLength <= MSS_MAX_PACKET_SIZE );
configASSERT( usLength <= MSS_MAX_PACKET_SIZE );
}
/* Check if second descriptor is free, if it is then the first must
also be free. */
if(((g_mss_mac.tx_descriptors[ 1 ].descriptor_0) & TDES0_OWN) == TDES0_OWN )
if( ( ( (g_mss_mac.tx_descriptors[ 0 ].descriptor_0) & TDES0_OWN) == TDES0_OWN ) || ( ( (g_mss_mac.tx_descriptors[ 1 ].descriptor_0) & TDES0_OWN) == TDES0_OWN ) )
{
error = MAC_BUFFER_IS_FULL;
}
if( error == MAC_OK ) {
/* Assumed TX_RING_SIZE == 2. */
if( error == MAC_OK )
{
/* Assumed TX_RING_SIZE == 2. A #error directive checks this is the
case. */
for( ulDescriptor = 0; ulDescriptor < TX_RING_SIZE; ulDescriptor++ )
{
g_mss_mac.tx_descriptors[ ulDescriptor ].descriptor_1 = 0u;
g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].descriptor_1 = 0u;
if( (g_mss_mac.flags & FLAG_CRC_DISABLE) != 0u ) {
g_mss_mac.tx_descriptors[ ulDescriptor ].descriptor_1 |= TDES1_AC;
g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].descriptor_1 |= TDES1_AC;
}
/* Every buffer can hold a full frame so they are always first and last
descriptor */
g_mss_mac.tx_descriptors[ ulDescriptor ].descriptor_1 |= TDES1_LS | TDES1_FS;
g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].descriptor_1 |= TDES1_LS | TDES1_FS | TDES1_IC;
/* set data size */
g_mss_mac.tx_descriptors[ ulDescriptor ].descriptor_1 |= usLength;
g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].descriptor_1 |= usLength;
/* reset end of ring */
g_mss_mac.tx_descriptors[TX_RING_SIZE-1].descriptor_1 |= TDES1_TER;
@ -445,10 +456,10 @@ MSS_MAC_tx_packet
}
/* The data buffer is assigned to the Tx descriptor. */
g_mss_mac.tx_descriptors[ ulDescriptor ].buffer_1 = ( unsigned long ) uip_buf;
g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].buffer_1 = ( unsigned long ) uip_buf;
/* update counters */
desc = g_mss_mac.tx_descriptors[ ulDescriptor ].descriptor_0;
desc = g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].descriptor_0;
if( (desc & TDES0_LO) != 0u ) {
g_mss_mac.statistics.tx_loss_of_carrier++;
}
@ -468,26 +479,22 @@ MSS_MAC_tx_packet
(desc >> TDES0_CC_OFFSET) & TDES0_CC_MASK;
/* Give ownership of descriptor to the MAC */
g_mss_mac.tx_descriptors[ ulDescriptor ].descriptor_0 = TDES0_OWN;
g_mss_mac.tx_descriptors[ g_mss_mac.tx_desc_index ].descriptor_0 = RDES0_OWN;
g_mss_mac.tx_desc_index = 0;
}
}
g_mss_mac.tx_desc_index = (g_mss_mac.tx_desc_index + 1u) % (uint32_t)TX_RING_SIZE;
/* Start transmission */
MAC_start_transmission();
/* transmit poll demand */
MAC->CSR1 = 1u;
}
}
if (error == MAC_OK)
{
/* The buffer uip_buf was pointing to is now under the control of the
MAC (it is being transmitted). Set uip_buf to point to a free buffer. */
uip_buf = MAC_obtain_buffer();
error = (int32_t)usLength;
/* The buffer pointed to by uip_buf is now assigned to a Tx descriptor.
Find anothere free buffer for uip_buf. */
uip_buf = MAC_obtain_buffer();
}
else
{
@ -512,8 +519,6 @@ MSS_MAC_rx_pckt_size
)
{
int32_t retval;
ASSERT( MAC_test_instance() == MAC_OK );
MAC_dismiss_bad_frames();
if( (g_mss_mac.rx_descriptors[ g_mss_mac.rx_desc_index ].descriptor_0 & RDES0_OWN) != 0u )
@ -549,8 +554,6 @@ MSS_MAC_rx_packet
{
uint16_t frame_length=0u;
ASSERT( MAC_test_instance() == MAC_OK );
MAC_dismiss_bad_frames();
if( (g_mss_mac.rx_descriptors[ g_mss_mac.rx_desc_index ].descriptor_0 & RDES0_OWN) == 0u )
@ -614,9 +617,7 @@ MSS_MAC_rx_packet_ptrset
uint16_t frame_length = 0u;
int8_t exit = 0;
ASSERT( MAC_test_instance() == MAC_OK );
ASSERT( (time_out == MSS_MAC_BLOCKING) ||
configASSERT( (time_out == MSS_MAC_BLOCKING) ||
(time_out == MSS_MAC_NONBLOCKING) ||
((time_out >= 1) && (time_out <= 0x01000000UL)) );
@ -679,8 +680,6 @@ MSS_MAC_link_status
{
uint32_t link;
ASSERT( MAC_test_instance() == MAC_OK );
link = PHY_link_status();
if( link == MSS_MAC_LINK_STATUS_LINK ) {
link |= PHY_link_type();
@ -706,7 +705,6 @@ MSS_MAC_auto_setup_link
)
{
int32_t link;
ASSERT( MAC_test_instance() == MAC_OK );
PHY_auto_negotiate();
@ -741,9 +739,8 @@ MSS_MAC_set_mac_address
const uint8_t *new_address
)
{
ASSERT( MAC_test_instance() == MAC_OK );
/* Check if the new address is unicast */
ASSERT( (new_address[0]&1) == 0 );
configASSERT( (new_address[0]&1) == 0 );
MAC_memcpy( g_mss_mac.mac_address, new_address, 6u );
@ -777,8 +774,6 @@ MSS_MAC_get_mac_address
uint8_t *address
)
{
ASSERT( MAC_test_instance() == MAC_OK );
MAC_memcpy( address, g_mss_mac.mac_address, 6u );
}
@ -796,13 +791,12 @@ MSS_MAC_set_mac_filters
const uint8_t *filters
)
{
ASSERT( MAC_test_instance() == MAC_OK );
ASSERT( (filter_count==0) || (filters != NULL_buffer) );
configASSERT( (filter_count==0) || (filters != NULL_buffer) );
/* Check if the mac addresses is multicast */
{
int32_t a;
for( a = 0u; a < filter_count; a++ ) {
ASSERT( (filters[a*6]&1) == 1 );
configASSERT( (filters[a*6]&1) == 1 );
}
}
@ -852,8 +846,6 @@ void EthernetMAC_IRQHandler( void )
uint32_t events;
uint32_t intr_status;
ASSERT( MAC_test_instance() == MAC_OK );
events = 0u;
intr_status = MAC->CSR5;
@ -896,8 +888,6 @@ MSS_MAC_set_callback
MSS_MAC_callback_t listener
)
{
ASSERT( MAC_test_instance() == MAC_OK );
/* disable tx and rx interrupts */
MAC_BITBAND->CSR7_RIE = 0u;
MAC_BITBAND->CSR7_TIE = 0u;
@ -930,8 +920,6 @@ MSS_MAC_last_error
int8_t error_msg_nb;
const int8_t* returnvalue;
ASSERT( MAC_test_instance() == MAC_OK );
error_msg_nb = -(g_mss_mac.last_error);
if( error_msg_nb >= ERROR_MESSAGE_COUNT ) {
returnvalue = unknown_error;
@ -957,7 +945,6 @@ MSS_MAC_get_statistics
)
{
uint32_t returnval = 0u;
ASSERT( MAC_test_instance() == MAC_OK );
switch( stat_id ) {
case MSS_MAC_RX_INTERRUPTS:
@ -1024,31 +1011,6 @@ MSS_MAC_get_statistics
/**************************** INTERNAL FUNCTIONS ******************************/
/***************************************************************************//**
* Checks if instace is valid.
*/
static int32_t
MAC_test_instance
(
void
)
{
uint32_t val1;
uint32_t val2;
int32_t retval = MAC_WRONG_PARAMETER;
val1 = MAC->CSR3;
val2 = MAC->CSR4;
if( (&g_mss_mac != NULL_instance) &&
((g_mss_mac.flags & FLAG_MAC_INIT_DONE) != 0u) &&
( val1 == (uint32_t)g_mss_mac.rx_descriptors) &&
(val2 == (uint32_t)g_mss_mac.tx_descriptors ) )
{
retval = MAC_OK;
}
return retval;
}
/***************************************************************************//**
* Prepares current rx descriptor for receiving.
@ -1166,10 +1128,10 @@ MAC_send_setup_frame
/* Stop transmission */
ret = MAC_stop_transmission();
ASSERT( ret == MAC_OK );
configASSERT( ret == MAC_OK );
ret = MAC_stop_receiving();
ASSERT( ret == MAC_OK );
configASSERT( ret == MAC_OK );
/* Set descriptor */
MAC->CSR4 = (uint32_t)&descriptor;
@ -1409,10 +1371,6 @@ static void MAC_memset_All(MAC_instance_t *s, uint32_t c)
MAC_memset( s->mac_address, (uint8_t)c, 6u );
MAC_memset( s->mac_filter_data, (uint8_t)c, 90u );
s->phy_address = (uint8_t)c;
// for(count = 0; count<RX_RING_SIZE ;count++)
// {
// MAC_memset(s->rx_buffers[count], (uint8_t)c, (MSS_RX_BUFF_SIZE + 4u) );
// }
s->rx_desc_index =c;
for(count = 0; count<RX_RING_SIZE ;count++)
{
@ -1440,10 +1398,6 @@ static void MAC_memset_All(MAC_instance_t *s, uint32_t c)
s->statistics.tx_no_carrier = c;
s->statistics.tx_underflow_error = c;
s->time_out_value = c;
// for(count = 0; count < TX_RING_SIZE ;count++)
// {
// MAC_memset( s->tx_buffers[count], (uint8_t)c, MSS_TX_BUFF_SIZE );
// }
s->tx_desc_index = c;
for(count = 0; count < TX_RING_SIZE ;count++)
{
@ -1470,21 +1424,28 @@ static void MAC_memcpy(uint8_t *dest, const uint8_t *src, uint32_t n)
}
}
void MSS_MAC_TxBufferCompleted( void )
/***************************************************************************//**
* Tx has completed, mark the buffers that were assigned to the Tx descriptors
* as free again.
*
*/
void MSS_MAC_FreeTxBuffers( void )
{
unsigned char *pxTransmittedBuffer;
/* Was it the second transmission that has completed? */
if( ( g_mss_mac.tx_descriptors[ 1 ].descriptor_0 & TDES0_OWN ) == 0UL )
if( ( ( (g_mss_mac.tx_descriptors[ 0 ].descriptor_0) & TDES0_OWN) == 0 ) && ( ( (g_mss_mac.tx_descriptors[ 1 ].descriptor_0) & TDES0_OWN) == 0 ) )
{
pxTransmittedBuffer = ( unsigned char * ) g_mss_mac.tx_descriptors[ 1 ].buffer_1;
/* The buffer has been transmitted and is no longer in use. */
MAC_release_buffer( pxTransmittedBuffer );
MAC_release_buffer( ( unsigned char * ) g_mss_mac.tx_descriptors[ 0 ].buffer_1 );
MAC_release_buffer( ( unsigned char * ) g_mss_mac.tx_descriptors[ 1 ].buffer_1 );
}
}
static unsigned char *MAC_obtain_buffer( void )
/***************************************************************************//**
* Look through the array of buffers until one is found that is free for use -
* that is, not currently assigned to an Rx or a Tx descriptor. Mark the buffer
* as in use, then return its address.
*
* @return a pointer to a free buffer.
*/
unsigned char *MAC_obtain_buffer( void )
{
long lIndex;
unsigned char *pcReturn = NULL;
@ -1493,9 +1454,10 @@ unsigned char *pcReturn = NULL;
the buffer as now in use. */
for( lIndex = 0; lIndex < macNUM_BUFFERS; lIndex++ )
{
if( ucMACBufferFree[ lIndex ] == pdTRUE )
if( ucMACBufferInUse[ lIndex ] == pdFALSE )
{
pcReturn = &( ucMACBuffers[ lIndex ][ 0 ] );
pcReturn = &( xMACBuffers.ucBuffer[ lIndex ][ 0 ] );
ucMACBufferInUse[ lIndex ] = pdTRUE;
break;
}
}
@ -1504,6 +1466,10 @@ unsigned char *pcReturn = NULL;
return pcReturn;
}
/***************************************************************************//**
* Return a buffer to the list of free buffers, it was in use, but is not now.
*
*/
void MAC_release_buffer( unsigned char *pucBufferToRelease )
{
long lIndex;
@ -1512,13 +1478,15 @@ long lIndex;
it is currently pointing to is marked as being free again. */
for( lIndex = 0; lIndex < macNUM_BUFFERS; lIndex++ )
{
if( pucBufferToRelease == &( ucMACBuffers[ lIndex ][ 0 ] ) )
if( pucBufferToRelease == &( xMACBuffers.ucBuffer[ lIndex ][ 0 ] ) )
{
/* This is the buffer in use, mark it as being free. */
ucMACBufferFree[ lIndex ] = pdTRUE;
ucMACBufferInUse[ lIndex ] = pdFALSE;
break;
}
}
configASSERT( lIndex < macNUM_BUFFERS );
}

View File

@ -560,23 +560,11 @@ MSS_MAC_get_statistics
mss_mac_statistics_id_t stat_id
);
/*
* Ensure uip_buf is pointing to a valid and free buffer before any transmissions
* initiated by the uIP stack occur.
*/
unsigned char *MSS_MAC_GetTxDescriptor( void );
/*
* A buffer is no longer required by the application. Hand it back to the
* control of the MAC hardware.
*/
void MSS_MAC_ReleaseBuffer( unsigned char *pucBuffer );
/*
* The double Tx has completed. Hand back the Tx buffer to the control of
* the MAC hardware.
*/
void MSS_MAC_TxBufferCompleted( void );
void MSS_MAC_FreeTxBuffers( void );
#ifdef __cplusplus
}
#endif

View File

@ -51,6 +51,7 @@ typedef struct {
* may be read by receiving its flags field, similarly MAC_configure routine lets
* you modify some of these flags.
*/
#include "net/pack_struct_start.h"
typedef struct {
addr_t base_address; /**< Register base address of the driver*/
uint8_t flags; /**< Configuration of the driver*/
@ -65,12 +66,10 @@ typedef struct {
/* transmit related info: */
uint32_t tx_desc_index; /**< index of the transmit descriptor getting used*/
// uint8_t tx_buffers[TX_RING_SIZE][MSS_TX_BUFF_SIZE];/**< array of transmit buffers*/
MAC_descriptor_t tx_descriptors[TX_RING_SIZE];/**< array of transmit descriptors*/
/* receive related info: */
uint32_t rx_desc_index; /**< index of the receive descriptor getting used*/
// uint8_t rx_buffers[RX_RING_SIZE][MSS_RX_BUFF_SIZE+4];/**< array of receive buffers*/
MAC_descriptor_t rx_descriptors[RX_RING_SIZE];/**< array of receive descriptors*/
uint8_t phy_address; /**< MII address of the connected PHY*/
@ -113,7 +112,8 @@ typedef struct {
uint32_t tx_underflow_error; /**< Number of occurrences of; the FIFO was empty during
the frame transmission.*/
} statistics;
} MAC_instance_t;
} MAC_instance_t
#include "net/pack_struct_end.h"
/*------------------------------------------------------------------------------

View File

@ -172,6 +172,7 @@ long lReturn = pdFALSE;
lReturn = pdTRUE;
}
}
taskEXIT_CRITICAL();
}
return lReturn;

View File

@ -212,7 +212,7 @@ static unsigned short generate_io_state( void *arg )
( void ) arg;
/* Are the dynamically setable LEDs currently on or off? */
if( lParTestGetLEDState( 8 ) )
if( lParTestGetLEDState( 3 ) )
{
pcStatus = "checked";
}
@ -229,26 +229,13 @@ static unsigned short generate_io_state( void *arg )
/*---------------------------------------------------------------------------*/
extern void vTaskGetRunTimeStats( signed char *pcWriteBuffer );
extern unsigned short usMaxJitter;
static char cJitterBuffer[ 200 ];
static unsigned short generate_runtime_stats( void *arg )
{
( void ) arg;
lRefreshCount++;
sprintf( cCountBuf, "<p><br>Refresh count = %d", ( int ) lRefreshCount );
#ifdef INCLUDE_HIGH_FREQUENCY_TIMER_TEST
{
sprintf( cJitterBuffer, "<p><br>Max high frequency timer jitter = %d peripheral clock periods.<p><br>", ( int ) usMaxJitter );
vTaskGetRunTimeStats( uip_appdata );
strcat( uip_appdata, cJitterBuffer );
}
#else
{
( void ) cJitterBuffer;
strcpy( uip_appdata, "<p>Run time stats are only available in the debug_with_optimisation build configuration.<p>" );
}
#endif
strcat( uip_appdata, cCountBuf );
return strlen( uip_appdata );

View File

@ -71,11 +71,11 @@
* incorporates a Cortex-M3 microcontroller.
*
* The main() Function:
* main() creates three demo specific software timers, one demo specific queue,
* and two demo specific tasks. It then creates a whole host of 'standard demo'
* tasks/queues/semaphores, before starting the scheduler. The demo specific
* tasks and timers are described in the comments here. The standard demo
* tasks are described on the FreeRTOS.org web site.
* main() creates two demo specific software timers, one demo specific queue,
* and three demo specific tasks. It then creates a whole host of 'standard
* demo' tasks/queues/semaphores, before starting the scheduler. The demo
* specific tasks and timers are described in the comments here. The standard
* demo tasks are described on the FreeRTOS.org web site.
*
* The standard demo tasks provide no specific functionality. They are
* included to both test the FreeRTOS port, and provide examples of how the
@ -102,6 +102,11 @@
* the Blocked state every 200 milliseconds, and therefore toggles the LED
* every 200 milliseconds.
*
* The Demo Specific OLED Task:
* The OLED task is a very simple task that just scrolls a message across the
* OLED. Ideally this would be done in a timer, but the OLED driver accesses
* the I2C which is time consuming.
*
* The Demo Specific LED Software Timer and the Button Interrupt:
* The user button SW1 is configured to generate an interrupt each time it is
* pressed. The interrupt service routine switches an LED on, and resets the
@ -110,10 +115,6 @@
* Therefore, pressing the user button will turn the LED on, and the LED will
* remain on until a full five seconds pass without the button being pressed.
*
* The Demo Specific OLED Software Timer:
* The OLED software timer is responsible for drawing a scrolling text message
* on the OLED.
*
* The Demo Specific "Check" Callback Function:
* This is called each time the 'check' timer expires. The check timer
* callback function inspects all the standard demo tasks to see if they are
@ -122,7 +123,7 @@
* is ever discovered. The check timer callback toggles the LED defined by
* the mainCHECK_LED definition each time it executes. Therefore, if LED
* mainCHECK_LED is toggling every three seconds, then no error have been found.
* If LED mainCHECK_LED is toggling every 500ms, then at least one error has
* If LED mainCHECK_LED is toggling every 500ms, then at least one errors has
* been found. The task in which the error was discovered is displayed at the
* bottom of the "task stats" page that is served by the embedded web server.
*
@ -146,6 +147,7 @@
/* Microsemi drivers/libraries includes. */
#include "mss_gpio.h"
#include "mss_watchdog.h"
#include "mss_timer.h"
#include "oled.h"
/* Common demo includes. */
@ -193,6 +195,7 @@ the queue empty. */
#define mainCREATOR_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 )
#define mainFLASH_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainuIP_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainOLED_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainINTEGER_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainGEN_QUEUE_TASK_PRIORITY ( tskIDLE_PRIORITY )
@ -202,15 +205,19 @@ stack than most of the other tasks. */
/* The period at which the check timer will expire, in ms, provided no errors
have been reported by any of the standard demo tasks. */
#define mainCHECK_TIMER_PERIOD_ms ( 3000UL )
#define mainCHECK_TIMER_PERIOD_MS ( 3000UL / portTICK_RATE_MS )
/* The period at which the OLED timer will expire. Each time it expires, it's
callback function updates the OLED text. */
#define mainOLED_PERIOD_ms ( 75UL )
#define mainOLED_PERIOD_MS ( 75UL / portTICK_RATE_MS )
/* The period at which the check timer will expire, in ms, if an error has been
reported in one of the standard demo tasks. */
#define mainERROR_CHECK_TIMER_PERIOD_ms ( 500UL )
#define mainERROR_CHECK_TIMER_PERIOD_MS ( 500UL / portTICK_RATE_MS )
/* The LED will remain on until the button has not been pushed for a full
5000ms. */
#define mainLED_TIMER_PERIOD_MS ( 5000UL / portTICK_RATE_MS )
/* A zero block time. */
#define mainDONT_BLOCK ( 0UL )
@ -231,17 +238,12 @@ static void prvQueueSendTask( void *pvParameters );
* The LED timer callback function. This does nothing but switch the red LED
* off.
*/
static void vLEDTimerCallback( xTimerHandle xTimer );
static void prvLEDTimerCallback( xTimerHandle xTimer );
/*
* The check timer callback function, as described at the top of this file.
*/
static void vCheckTimerCallback( xTimerHandle xTimer );
/*
* The OLED timer callback function, as described at the top of this file.
*/
static void vOLEDTimerCallback( xTimerHandle xHandle );
static void prvCheckTimerCallback( xTimerHandle xTimer );
/*
* This is not a 'standard' partest function, so the prototype is not in
@ -254,22 +256,26 @@ void vParTestSetLEDFromISR( unsigned portBASE_TYPE uxLED, signed portBASE_TYPE x
*/
extern void vuIP_Task( void *pvParameters );
/*
* A very simply task that does nothing but scroll the OLED display. Ideally
* this would be done within a timer, but it accesses the I2C port which is
* time consuming.
*/
static void prvOLEDTask( void * pvParameters);
/*-----------------------------------------------------------*/
/* The queue used by both application specific demo tasks defined in this file. */
static xQueueHandle xQueue = NULL;
/* The LED software timer. This uses vLEDTimerCallback() as it's callback
/* The LED software timer. This uses prvLEDTimerCallback() as it's callback
function. */
static xTimerHandle xLEDTimer = NULL;
/* The check timer. This uses vCheckTimerCallback() as it's callback
/* The check timer. This uses prvCheckTimerCallback() as it's callback
function. */
static xTimerHandle xCheckTimer = NULL;
/* The OLED software timer. Writes a moving text string to the OLED. */
static xTimerHandle xOLEDTimer = NULL;
/* The status message that is displayed at the bottom of the "task stats" web
page, which is served by the uIP task. This will report any errors picked up
by the check timer callback. */
@ -287,33 +293,31 @@ int main(void)
if( xQueue != NULL )
{
/* Start the two application specific demo tasks, as described in the
/* Start the three application specific demo tasks, as described in the
comments at the top of this file. */
xTaskCreate( prvQueueReceiveTask, ( signed char * ) "Rx", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_RECEIVE_TASK_PRIORITY, NULL );
xTaskCreate( prvQueueSendTask, ( signed char * ) "TX", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_SEND_TASK_PRIORITY, NULL );
xTaskCreate( prvOLEDTask, ( signed char * ) "OLED", configMINIMAL_STACK_SIZE, NULL, mainOLED_TASK_PRIORITY, NULL );
/* Create the software timer that is responsible for turning off the LED
if the button is not pushed within 5000ms, as described at the top of
this file. */
xLEDTimer = xTimerCreate( ( const signed char * ) "LEDTimer", /* A text name, purely to help debugging. */
( 5000 / portTICK_RATE_MS ), /* The timer period, in this case 5000ms (5s). */
( mainLED_TIMER_PERIOD_MS ), /* The timer period, in this case 5000ms (5s). */
pdFALSE, /* This is a one shot timer, so xAutoReload is set to pdFALSE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
vLEDTimerCallback /* The callback function that switches the LED off. */
prvLEDTimerCallback /* The callback function that switches the LED off. */
);
/* Create the software timer that performs the 'check' functionality,
as described at the top of this file. */
xCheckTimer = xTimerCreate( ( const signed char * ) "CheckTimer",/* A text name, purely to help debugging. */
( mainCHECK_TIMER_PERIOD_ms / portTICK_RATE_MS ),/* The timer period, in this case 3000ms (3s). */
( mainCHECK_TIMER_PERIOD_MS ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
vCheckTimerCallback /* The callback function that inspects the status of all the other tasks. */
prvCheckTimerCallback /* The callback function that inspects the status of all the other tasks. */
);
/* Create the OLED timer as described at the top of this file. */
xOLEDTimer = xTimerCreate( ( const signed char * ) "OLEDTimer", ( mainOLED_PERIOD_ms / portTICK_RATE_MS ), pdTRUE, ( void * ) 0, vOLEDTimerCallback );
/* Create a lot of 'standard demo' tasks. */
vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY );
vCreateBlockTimeTasks();
@ -325,7 +329,13 @@ int main(void)
vStartTimerDemoTask( mainTIMER_TEST_PERIOD );
/* Create the web server task. */
// xTaskCreate( vuIP_Task, ( signed char * ) "uIP", mainuIP_STACK_SIZE, NULL, mainuIP_TASK_PRIORITY, NULL );
xTaskCreate( vuIP_Task, ( signed char * ) "uIP", mainuIP_STACK_SIZE, NULL, mainuIP_TASK_PRIORITY, NULL );
/* The suicide tasks must be created last, as they need to know how many
tasks were running prior to their creation in order to ascertain whether
or not the correct/expected number of tasks are running at any given
time. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
/* Start the tasks and timer running. */
vTaskStartScheduler();
@ -340,7 +350,7 @@ int main(void)
}
/*-----------------------------------------------------------*/
static void vCheckTimerCallback( xTimerHandle xTimer )
static void prvCheckTimerCallback( xTimerHandle xTimer )
{
/* Check the standard demo tasks are running without error. Latch the
latest reported error in the pcStatusMessage character pointer. */
@ -379,18 +389,18 @@ static void vCheckTimerCallback( xTimerHandle xTimer )
pcStatusMessage = "Error: RecMutex\r\n";
}
if( xAreTimerDemoTasksStillRunning( ( mainCHECK_TIMER_PERIOD_ms / portTICK_RATE_MS ) ) != pdTRUE )
if( xAreTimerDemoTasksStillRunning( ( mainCHECK_TIMER_PERIOD_MS ) ) != pdTRUE )
{
pcStatusMessage = "Error: TimerDemo";
}
/* Toggle the check LED to give an indication of the system status. If
the LED toggles every mainCHECK_TIMER_PERIOD_ms milliseconds then
the LED toggles every mainCHECK_TIMER_PERIOD_MS milliseconds then
everything is ok. A faster toggle indicates an error. */
vParTestToggleLED( mainCHECK_LED );
/* Have any errors been latch in pcStatusMessage? If so, shorten the
period of the check timer to mainERROR_CHECK_TIMER_PERIOD_ms milliseconds.
period of the check timer to mainERROR_CHECK_TIMER_PERIOD_MS milliseconds.
This will result in an increase in the rate at which mainCHECK_LED
toggles. */
if( pcStatusMessage != NULL )
@ -398,12 +408,12 @@ static void vCheckTimerCallback( xTimerHandle xTimer )
/* This call to xTimerChangePeriod() uses a zero block time. Functions
called from inside of a timer callback function must *never* attempt
to block. */
xTimerChangePeriod( xCheckTimer, ( mainERROR_CHECK_TIMER_PERIOD_ms / portTICK_RATE_MS ), mainDONT_BLOCK );
xTimerChangePeriod( xCheckTimer, ( mainERROR_CHECK_TIMER_PERIOD_MS ), mainDONT_BLOCK );
}
}
/*-----------------------------------------------------------*/
static void vLEDTimerCallback( xTimerHandle xTimer )
static void prvLEDTimerCallback( xTimerHandle xTimer )
{
/* The timer has expired - so no button pushes have occurred in the last
five seconds - turn the LED off. */
@ -443,13 +453,6 @@ static void prvQueueSendTask( void *pvParameters )
portTickType xNextWakeTime;
const unsigned long ulValueToSend = 100UL;
/* The suicide tasks must be created last, as they need to know how many
tasks were running prior to their creation in order to ascertain whether
or not the correct/expected number of tasks are running at any given time.
Therefore the standard demo 'death' tasks are not created in main(), but
instead created here. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
/* The timer command queue will have been filled when the timer test tasks
were created in main() (this is part of the test they perform). Therefore,
while the check and OLED timers can be created in main(), they cannot be
@ -457,7 +460,6 @@ const unsigned long ulValueToSend = 100UL;
task will drain the command queue, and now the check and OLED timers can be
started successfully. */
xTimerStart( xCheckTimer, portMAX_DELAY );
xTimerStart( xOLEDTimer, portMAX_DELAY );
/* Initialise xNextWakeTime - this only needs to be done once. */
xNextWakeTime = xTaskGetTickCount();
@ -474,7 +476,7 @@ const unsigned long ulValueToSend = 100UL;
toggle an LED. 0 is used as the block time so the sending operation
will not block - it shouldn't need to block as the queue should always
be empty at this point in the code. */
xQueueSend( xQueue, &ulValueToSend, 0 );
xQueueSend( xQueue, &ulValueToSend, mainDONT_BLOCK );
}
}
/*-----------------------------------------------------------*/
@ -500,33 +502,20 @@ unsigned long ulReceivedValue;
}
/*-----------------------------------------------------------*/
static void vOLEDTimerCallback( xTimerHandle xHandle )
static void prvOLEDTask( void * pvParameters)
{
volatile size_t xFreeStackSpace;
static struct oled_data xOLEDData;
static unsigned char ucOffset1 = 0, ucOffset2 = 5;
static portTickType xLastScrollTime = 0UL;
/* This function is called on each cycle of the idle task. In this case it
does nothing useful, other than report the amount of FreeRTOS heap that
remains unallocated. */
xFreeStackSpace = xPortGetFreeHeapSize();
if( xFreeStackSpace > 100 )
{
/* By now, the kernel has allocated everything it is going to, so
if there is a lot of heap remaining unallocated then
the value of configTOTAL_HEAP_SIZE in FreeRTOSConfig.h can be
reduced accordingly. */
}
/* Initialise the display. */
OLED_init();
/* Initialise the parts of the oled_data structure that do not change. */
xOLEDData.line1 = FIRST_LINE;
xOLEDData.char_offset1 = ucOffset1++;
xOLEDData.string1 = " www.FreeRTOS.org";
xOLEDData.line2 = SECOND_LINE;
xOLEDData.char_offset2 = ucOffset2++;
xOLEDData.string2 = " www.FreeRTOS.org";
xOLEDData.contrast_val = OLED_CONTRAST_VAL;
xOLEDData.on_off = OLED_HORIZ_SCROLL_OFF;
xOLEDData.column_scrool_per_step = OLED_HORIZ_SCROLL_STEP;
@ -534,21 +523,35 @@ static unsigned char ucOffset1 = 0, ucOffset2 = 5;
xOLEDData.time_intrval_btw_scroll_step = OLED_HORIZ_SCROLL_TINVL;
xOLEDData.end_page = OLED_END_PAGE;
/* Initialise the last scroll time. This only needs to be done once,
because from this point on it will get automatically updated in the
xTaskDelayUntil() API function. */
xLastScrollTime = xTaskGetTickCount();
for( ;; )
{
/* Wait until it is time to update the OLED again. */
vTaskDelayUntil( &xLastScrollTime, mainOLED_PERIOD_MS );
xOLEDData.char_offset1 = ucOffset1++;
xOLEDData.char_offset2 = ucOffset2++;
OLED_write_data( &xOLEDData, BOTH_LINES );
}
}
/*-----------------------------------------------------------*/
static void prvSetupHardware( void )
{
SystemCoreClockUpdate();
/* Disable the Watch Dog Timer */
MSS_WD_disable( );
/* Configure the GPIO for the LEDs. */
vParTestInitialise();
/* Initialise the display. */
OLED_init();
/* Setup the GPIO and the NVIC for the switch used in this simple demo. */
NVIC_SetPriority( GPIO8_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
NVIC_EnableIRQ( GPIO8_IRQn );
@ -616,3 +619,33 @@ char *pcGetTaskStatusMessage( void )
}
/*-----------------------------------------------------------*/
void vMainConfigureTimerForRunTimeStats( void )
{
const unsigned long ulMax32BitValue = 0xffffffffUL;
MSS_TIM64_init( MSS_TIMER_PERIODIC_MODE );
MSS_TIM64_load_immediate( ulMax32BitValue, ulMax32BitValue );
MSS_TIM64_start();
}
/*-----------------------------------------------------------*/
unsigned long ulGetRunTimeCounterValue( void )
{
unsigned long long ullCurrentValue;
const unsigned long long ulMax64BitValue = 0xffffffffffffffffULL;
unsigned long *pulHighWord, *pulLowWord;
pulHighWord = ( unsigned long * ) &ullCurrentValue;
pulLowWord = pulHighWord++;
MSS_TIM64_get_current_value( ( uint32_t * ) pulHighWord, ( uint32_t * ) pulLowWord );
/* Convert the down count into an upcount. */
ullCurrentValue = ulMax64BitValue - ullCurrentValue;
/* Scale to a 32bit number of suitable frequency. */
ullCurrentValue >>= 13;
/* Just return 32 bits. */
return ( unsigned long ) ullCurrentValue;
}

View File

@ -74,27 +74,25 @@
#include "mss_ethernet_mac_regs.h"
#include "mss_ethernet_mac.h"
/* The buffer used by the uIP stack to both receive and send. This points to
one of the Ethernet buffers when its actually in use. */
/* The buffer used by the uIP stack to both receive and send. In this case,
because the Ethernet driver has been modified to be zero copy - the uip_buf
variable is just a pointer to an Ethernet buffer, and not a buffer in its own
right. */
extern unsigned char *uip_buf;
static const unsigned char ucMACAddress[] = { configMAC_ADDR0, configMAC_ADDR1, configMAC_ADDR2, configMAC_ADDR3, configMAC_ADDR4, configMAC_ADDR5 };
/* The ARP timer and the periodic timer share a callback function, so the
respective timer IDs are used to determine which timer actually expired. These
constants are assigned to the timer IDs. */
#define uipARP_TIMER 0
#define uipPERIODIC_TIMER 1
/* The length of the queue used to send events from timers or the Ethernet
driver to the uIP stack. */
#define uipEVENT_QUEUE_LENGTH 10
#define uipETHERNET_RX_EVENT 0x01UL
#define uipETHERNET_TX_EVENT 0x02UL
#define uipARP_TIMER_EVENT 0x04UL
#define uipPERIODIC_TIMER_EVENT 0x08UL
#define uipAPPLICATION_SEND_EVENT 0x10UL
/* A block time of zero simply means "don't block". */
#define uipDONT_BLOCK 0UL
/*-----------------------------------------------------------*/
/* How long to wait before attempting to connect the MAC again. */
#define uipINIT_WAIT ( 100 / portTICK_RATE_MS )
@ -122,6 +120,10 @@ static void prvInitialise_uIP( void );
*/
static void prvEMACEventListener( unsigned long ulISREvents );
/*
* The callback function that is assigned to both the periodic timer and the
* ARP timer.
*/
static void prvUIPTimerCallback( xTimerHandle xTimer );
/*
@ -129,14 +131,16 @@ static void prvUIPTimerCallback( xTimerHandle xTimer );
*/
static void prvInitEmac( void );
/*
* Write data to the Ethener. Note that this actually writes data twice for the
* to get around delayed ack issues when communicating with a non real-time
* peer (for example, a Windows machine).
*/
void vEMACWrite( void );
long lEMACWaitForLink( void );
/*
* Port functions required by the uIP stack.
*/
void clock_init( void );
clock_time_t clock_time( void );
/*-----------------------------------------------------------*/
@ -144,14 +148,6 @@ clock_time_t clock_time( void );
/* The queue used to send TCP/IP events to the uIP stack. */
xQueueHandle xEMACEventQueue = NULL;
static unsigned long ulUIP_Events = 0UL;
/*-----------------------------------------------------------*/
void clock_init(void)
{
/* This is done when the scheduler starts. */
}
/*-----------------------------------------------------------*/
clock_time_t clock_time( void )
@ -163,31 +159,24 @@ clock_time_t clock_time( void )
void vuIP_Task( void *pvParameters )
{
portBASE_TYPE i;
unsigned long ulNewEvent;
unsigned long ulNewEvent = 0UL;
unsigned long ulUIP_Events = 0UL;
/* Just to prevent compiler warnings about the unused parameter. */
( void ) pvParameters;
/* Initialise the uIP stack, configuring for web server usage. */
prvInitialise_uIP();
/* Initialise the MAC. */
/* Initialise the MAC and PHY. */
prvInitEmac();
for( ;; )
{
if( ( ulUIP_Events & uipETHERNET_TX_EVENT ) != 0UL )
{
ulUIP_Events &= ~uipETHERNET_TX_EVENT;
MSS_MAC_TxBufferCompleted();
}
if( ( ulUIP_Events & uipETHERNET_RX_EVENT ) != 0UL )
{
ulUIP_Events &= ~uipETHERNET_RX_EVENT;
/* Is there received data ready to be processed? */
uip_len = MSS_MAC_rx_packet();
/* Statements to be executed if data has been received on the Ethernet. */
if( ( uip_len > 0 ) && ( uip_buf != NULL ) )
{
/* Standard uIP loop taken from the uIP manual. */
@ -218,12 +207,19 @@ unsigned long ulNewEvent;
}
}
}
else
{
/* Clear the RX event latched in ulUIP_Events - if one was latched. */
ulUIP_Events &= ~uipETHERNET_RX_EVENT;
}
/* Statements to be executed if the TCP/IP period timer has expired. */
if( ( ulUIP_Events & uipPERIODIC_TIMER_EVENT ) != 0UL )
{
ulUIP_Events &= ~uipPERIODIC_TIMER_EVENT;
if( uip_buf != NULL )
{
for( i = 0; i < UIP_CONNS; i++ )
{
uip_periodic( i );
@ -238,14 +234,17 @@ unsigned long ulNewEvent;
}
}
}
}
/* Call the ARP timer function every 10 seconds. */
/* Statements to be executed if the ARP timer has expired. */
if( ( ulUIP_Events & uipARP_TIMER_EVENT ) != 0 )
{
ulUIP_Events &= ~uipARP_TIMER_EVENT;
uip_arp_timer();
}
/* If all latched events have been cleared - block until another event
occurs. */
if( ulUIP_Events == pdFALSE )
{
xQueueReceive( xEMACEventQueue, &ulNewEvent, portMAX_DELAY );
@ -270,49 +269,6 @@ struct uip_eth_addr xAddr;
}
/*-----------------------------------------------------------*/
void vApplicationProcessFormInput( char *pcInputString )
{
char *c;
/* Only interested in processing form input if this is the IO page. */
c = strstr( pcInputString, "io.shtml" );
if( c )
{
/* Is there a command in the string? */
c = strstr( pcInputString, "?" );
if( c )
{
/* Turn the LED's on or off in accordance with the check box status. */
if( strstr( c, "LED0=1" ) != NULL )
{
/* Turn the LEDs on. */
vParTestSetLED( 7, 1 );
vParTestSetLED( 8, 1 );
vParTestSetLED( 9, 1 );
vParTestSetLED( 10, 1 );
}
else
{
/* Turn the LEDs off. */
vParTestSetLED( 7, 0 );
vParTestSetLED( 8, 0 );
vParTestSetLED( 9, 0 );
vParTestSetLED( 10, 0 );
}
}
else
{
/* Commands to turn LEDs off are not always explicit. */
vParTestSetLED( 7, 0 );
vParTestSetLED( 8, 0 );
vParTestSetLED( 9, 0 );
vParTestSetLED( 10, 0 );
}
}
}
/*-----------------------------------------------------------*/
static void prvInitialise_uIP( void )
{
uip_ipaddr_t xIPAddr;
@ -331,22 +287,25 @@ xTimerHandle xARPTimer, xPeriodicTimer;
/* Create and start the uIP timers. */
xARPTimer = xTimerCreate( ( const signed char * const ) "ARPTimer", /* Just a name that is helpful for debugging, not used by the kernel. */
( 500 / portTICK_RATE_MS ), /* Timer period. */
( 10000UL / portTICK_RATE_MS ), /* Timer period. */
pdTRUE, /* Autor-reload. */
( void * ) uipARP_TIMER,
prvUIPTimerCallback
);
xPeriodicTimer = xTimerCreate( ( const signed char * const ) "PeriodicTimer",
( 5000 / portTICK_RATE_MS ),
( 500UL / portTICK_RATE_MS ),
pdTRUE, /* Autor-reload. */
( void * ) uipPERIODIC_TIMER,
prvUIPTimerCallback
);
/* Sanity check that the timers were indeed created. */
configASSERT( xARPTimer );
configASSERT( xPeriodicTimer );
/* These commands will block indefinitely until they succeed, so there is
no point in checking their return values. */
xTimerStart( xARPTimer, portMAX_DELAY );
xTimerStart( xPeriodicTimer, portMAX_DELAY );
}
@ -355,24 +314,21 @@ xTimerHandle xARPTimer, xPeriodicTimer;
static void prvEMACEventListener( unsigned long ulISREvents )
{
long lHigherPriorityTaskWoken = pdFALSE;
unsigned long ulUIPEvents = 0UL;
const unsigned long ulRxEvent = uipETHERNET_RX_EVENT;
/* Sanity check that the event queue was indeed created. */
configASSERT( xEMACEventQueue );
if( ( ulISREvents & MSS_MAC_EVENT_PACKET_SEND ) != 0UL )
{
ulUIP_Events |= uipETHERNET_TX_EVENT;
/* An Ethernet Tx event has occurred. */
MSS_MAC_FreeTxBuffers();
}
if( ( ulISREvents & MSS_MAC_EVENT_PACKET_RECEIVED ) != 0UL )
{
/* Wake the uIP task as new data has arrived. */
ulUIPEvents |= uipETHERNET_RX_EVENT;
}
if( ulUIPEvents != 0UL )
{
xQueueSendFromISR( xEMACEventQueue, &ulUIPEvents, &lHigherPriorityTaskWoken );
/* An Ethernet Rx event has occurred. */
xQueueSendFromISR( xEMACEventQueue, &ulRxEvent, &lHigherPriorityTaskWoken );
}
portEND_SWITCHING_ISR( lHigherPriorityTaskWoken );
@ -383,9 +339,12 @@ static void prvInitEmac( void )
{
const unsigned char ucPHYAddress = 1;
/* Initialise the MAC and PHY hardware. */
MSS_MAC_init( ucPHYAddress );
MSS_MAC_set_callback( prvEMACEventListener );
/* Register the event listener. The Ethernet interrupt handler will call
this listener whenever an Rx or a Tx interrupt occurs. */
MSS_MAC_set_callback( ( MSS_MAC_callback_t ) prvEMACEventListener );
/* Setup the EMAC and the NVIC for MAC interrupts. */
NVIC_SetPriority( EthernetMAC_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
@ -399,6 +358,10 @@ const long lMaxAttempts = 10;
long lAttempt;
const portTickType xShortDelay = ( 10 / portTICK_RATE_MS );
/* Try to send data to the Ethernet. Keep trying for a while if data cannot
be sent immediately. Note that this will actually cause the data to be sent
twice to get around delayed ACK problems when communicating with non real-
time TCP/IP stacks (such as a Windows machine). */
for( lAttempt = 0; lAttempt < lMaxAttempts; lAttempt++ )
{
if( MSS_MAC_tx_packet( uip_len ) != 0 )
@ -413,28 +376,14 @@ const portTickType xShortDelay = ( 10 / portTICK_RATE_MS );
}
/*-----------------------------------------------------------*/
long lEMACWaitForLink( void )
{
long lReturn = pdFAIL;
unsigned long ulStatus;
ulStatus = MSS_MAC_link_status();
if( ( ulStatus & ( unsigned long ) MSS_MAC_LINK_STATUS_LINK ) != 0UL )
{
lReturn = pdPASS;
}
return lReturn;
}
/*-----------------------------------------------------------*/
static void prvUIPTimerCallback( xTimerHandle xTimer )
{
static const unsigned long ulARPTimerExpired = uipARP_TIMER_EVENT;
static const unsigned long ulPeriodicTimerExpired = uipPERIODIC_TIMER_EVENT;
/* This is a time callback, so calls to xQueueSend() must not attempt to
block. */
block. As this callback is assigned to both the ARP and Periodic timers, the
first thing to do is ascertain which timer it was that actually expired. */
switch( ( int ) pvTimerGetTimerID( xTimer ) )
{
case uipARP_TIMER : xQueueSend( xEMACEventQueue, &ulARPTimerExpired, uipDONT_BLOCK );
@ -448,3 +397,40 @@ static const unsigned long ulPeriodicTimerExpired = uipPERIODIC_TIMER_EVENT;
}
}
/*-----------------------------------------------------------*/
void vApplicationProcessFormInput( char *pcInputString )
{
char *c;
/* Only interested in processing form input if this is the IO page. */
c = strstr( pcInputString, "io.shtml" );
if( c )
{
/* Is there a command in the string? */
c = strstr( pcInputString, "?" );
if( c )
{
/* Turn the LED's on or off in accordance with the check box status. */
if( strstr( c, "LED0=1" ) != NULL )
{
/* Turn the LEDs on. */
vParTestSetLED( 3, 1 );
vParTestSetLED( 4, 1 );
}
else
{
/* Turn the LEDs off. */
vParTestSetLED( 3, 0 );
vParTestSetLED( 4, 0 );
}
}
else
{
/* Commands to turn LEDs off are not always explicit. */
vParTestSetLED( 3, 0 );
vParTestSetLED( 4, 0 );
}
}
}
/*-----------------------------------------------------------*/