This repository has been archived on 2023-11-05. You can view files and clone it, but cannot push or open issues or pull requests.
FreeRTOS-Kernel/FreeRTOS/Source/portable/IAR/RL78/port.c

265 lines
10 KiB
C
Raw Normal View History

/*
2013-02-20 02:36:58 +08:00
FreeRTOS V7.4.0 - Copyright (C) 2013 Real Time Engineers Ltd.
2012-10-16 20:17:47 +08:00
2013-02-20 02:36:58 +08:00
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
2012-10-16 20:17:47 +08:00
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
2013-02-20 02:36:58 +08:00
>>>>>>NOTE<<<<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
2013-02-20 02:36:58 +08:00
kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License
and the FreeRTOS license exception along with FreeRTOS; if not itcan be
viewed here: http://www.freertos.org/a00114.html and also obtained by
writing to Real Time Engineers Ltd., contact details for whom are available
on the FreeRTOS WEB site.
1 tab == 4 spaces!
2013-02-20 02:36:58 +08:00
2012-05-09 00:36:52 +08:00
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
2012-10-16 20:17:47 +08:00
* not run, what could be wrong?" *
2012-05-09 00:36:52 +08:00
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
2013-02-20 02:36:58 +08:00
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
2013-02-20 02:36:58 +08:00
license and Real Time Engineers Ltd. contact details.
2012-05-09 00:36:52 +08:00
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
2013-02-20 02:36:58 +08:00
including FreeRTOS+Trace - an indispensable productivity tool, and our new
fully thread aware and reentrant UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems, who sell the code with commercial support,
2013-02-20 02:36:58 +08:00
indemnification and middleware, under the OpenRTOS brand.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
2013-02-20 02:36:58 +08:00
mission critical applications that require provable dependability.
*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
/* The critical nesting value is initialised to a non zero value to ensure
interrupts don't accidentally become enabled before the scheduler is started. */
2011-09-09 20:37:07 +08:00
#define portINITIAL_CRITICAL_NESTING ( ( unsigned short ) 10 )
/* Initial PSW value allocated to a newly created task.
* 1100011000000000
* ||||||||-------------- Fill byte
* |||||||--------------- Carry Flag cleared
* |||||----------------- In-service priority Flags set to low level
* ||||------------------ Register bank Select 0 Flag cleared
* |||------------------- Auxiliary Carry Flag cleared
* ||-------------------- Register bank Select 1 Flag cleared
* |--------------------- Zero Flag set
* ---------------------- Global Interrupt Flag set (enabled)
*/
2011-09-10 00:18:57 +08:00
#define portPSW ( 0xc6UL )
2011-09-09 20:37:07 +08:00
/* The address of the pxCurrentTCB variable, but don't know or need to know its
type. */
typedef void tskTCB;
extern volatile tskTCB * volatile pxCurrentTCB;
2011-09-09 20:37:07 +08:00
/* Each task maintains a count of the critical section nesting depth. Each time
a critical section is entered the count is incremented. Each time a critical
section is exited the count is decremented - with interrupts only being
re-enabled if the count is zero.
usCriticalNesting will get set to zero when the scheduler starts, but must
2011-09-09 20:37:07 +08:00
not be initialised to zero as that could cause problems during the startup
sequence. */
volatile unsigned short usCriticalNesting = portINITIAL_CRITICAL_NESTING;
2011-09-09 20:37:07 +08:00
/*-----------------------------------------------------------*/
/*
* Sets up the periodic ISR used for the RTOS tick.
*/
static void prvSetupTimerInterrupt( void );
2011-09-09 20:37:07 +08:00
2011-09-10 00:18:57 +08:00
/*
* Defined in portasm.s87, this function starts the scheduler by loading the
* context of the first task to run.
*/
extern void vPortStartFirstTask( void );
/*-----------------------------------------------------------*/
/*
* Initialise the stack of a task to look exactly as if a call to
* portSAVE_CONTEXT had been called.
*
* See the header file portable.h.
*/
portSTACK_TYPE *pxPortInitialiseStack( portSTACK_TYPE *pxTopOfStack, pdTASK_CODE pxCode, void *pvParameters )
{
unsigned long *pulLocal;
#if __DATA_MODEL__ == __DATA_MODEL_FAR__
{
/* Parameters are passed in on the stack, and written using a 32bit value
hence a space is left for the second two bytes. */
pxTopOfStack--;
/* Write in the parameter value. */
pulLocal = ( unsigned long * ) pxTopOfStack;
*pulLocal = ( unsigned long ) pvParameters;
pxTopOfStack--;
/* These values are just spacers. The return address of the function
would normally be written here. */
*pxTopOfStack = ( portSTACK_TYPE ) 0xcdcd;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0xcdcd;
pxTopOfStack--;
/* The start address / PSW value is also written in as a 32bit value,
so leave a space for the second two bytes. */
pxTopOfStack--;
/* Task function start address combined with the PSW. */
pulLocal = ( unsigned long * ) pxTopOfStack;
*pulLocal = ( ( ( unsigned long ) pxCode ) | ( portPSW << 24UL ) );
pxTopOfStack--;
/* An initial value for the AX register. */
*pxTopOfStack = ( portSTACK_TYPE ) 0x1111;
pxTopOfStack--;
}
#else
{
/* Task function address is written to the stack first. As it is
written as a 32bit value a space is left on the stack for the second
two bytes. */
pxTopOfStack--;
/* Task function start address combined with the PSW. */
pulLocal = ( unsigned long * ) pxTopOfStack;
*pulLocal = ( ( ( unsigned long ) pxCode ) | ( portPSW << 24UL ) );
pxTopOfStack--;
/* The parameter is passed in AX. */
*pxTopOfStack = ( portSTACK_TYPE ) pvParameters;
pxTopOfStack--;
}
#endif
/* An initial value for the HL register. */
*pxTopOfStack = ( portSTACK_TYPE ) 0x2222;
pxTopOfStack--;
/* CS and ES registers. */
*pxTopOfStack = ( portSTACK_TYPE ) 0x0F00;
pxTopOfStack--;
/* Finally the remaining general purpose registers DE and BC */
*pxTopOfStack = ( portSTACK_TYPE ) 0xDEDE;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0xBCBC;
pxTopOfStack--;
/* Finally the critical section nesting count is set to zero when the task
first starts. */
*pxTopOfStack = ( portSTACK_TYPE ) portNO_CRITICAL_SECTION_NESTING;
2011-09-09 20:37:07 +08:00
/* Return a pointer to the top of the stack that has beene generated so it
can be stored in the task control block for the task. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
portBASE_TYPE xPortStartScheduler( void )
{
/* Setup the hardware to generate the tick. Interrupts are disabled when
this function is called. */
prvSetupTimerInterrupt();
/* Restore the context of the first task that is going to run. */
2011-09-10 00:18:57 +08:00
vPortStartFirstTask();
2011-09-09 20:37:07 +08:00
/* Execution should not reach here as the tasks are now running! */
return pdTRUE;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* It is unlikely that the RL78/G13 port will get stopped. If required simply
disable the tick interrupt here. */
}
/*-----------------------------------------------------------*/
static void prvSetupTimerInterrupt( void )
{
const unsigned short usClockHz = 15000UL; /* Internal clock. */
const unsigned short usCompareMatch = ( usClockHz / configTICK_RATE_HZ ) + 1UL;
/* Use the internal 15K clock. */
OSMC = ( unsigned char ) 0x16;
/* Supply the RTC clock. */
RTCEN = ( unsigned char ) 1U;
/* Disable ITMC operation. */
ITMC = ( unsigned char ) 0x0000;
/* Disable INTIT interrupt. */
ITMK = ( unsigned char ) 1;
/* Set INTIT high priority */
ITPR1 = ( unsigned char ) 1;
ITPR0 = ( unsigned char ) 1;
/* Clear INIT interrupt. */
ITIF = ( unsigned char ) 0;
/* Set interval and enable interrupt operation. */
ITMC = usCompareMatch | 0x8000U;
/* Enable INTIT interrupt. */
ITMK = ( unsigned char ) 0;
/* Enable IT operation. */
// ITMC |= 0x8000;
}
/*-----------------------------------------------------------*/